Macroeconomic Theory -
Huggett and Aiyagari Models

Darapheak Tin

Research School of Economics,
Australian National University

Sample Teaching Slides IlI


http://darapheaktin.github.io

Table of Contents

Huggett Model
Setup
Stationary Equilibrium Definition
Calibration
Huggett Algorithm - Overview
Matlab Code - Huggett model vO.m

Aiyagari Model
Huggett vs Aiyagari - Comparison
Setup
Stationary Equilibrium Definition
Calibration
Aiyagari Algorithm - Value Function Iteration (VFI)
Aiyagari Algorithm - Stationary Distribution
Matlab Code - Aiyagari model v2.m
Wealth Inequality - Lorenz Curves

Appendix
Huggett - Household optimality conditions
Huggett Algorithm - Value Function Iteration (VFI)
Huggett Algorithm - Stationary Distribution
Aiyagari Computational Method - VFI + Gauss-Seidel



Huggett Model



Huggett Model | - Environment

A simple endowment economy based on Huggett (1993).
» Unit mass of infinitely lived, ex-ante identical households.

» Households face idiosyncratic income shock y; every period (no
aggregate shocks).

» Incomplete (insurance) markets. Households can save/borrow
one-period risk-free bond.

» No firm, no government. Output/income is an endowment.



Huggett Model Il - Preferences and Asset

Preferences. time-separable with CRRA utility:

[e%S) _
Clo

U=> p'u(c) u(c) = — Be(0,1), o>0.

1
t=0

Asset (bond). Households trade a risk-free one-period bond with gross
return R, given that SR < 1.

Timing (per period).
1. State: Observe income y; and beginning-of-period bonds b;.
2. Decision: Choose consumption ¢; and next-period bonds b;.1.

3. Income y;; is a stochastic component
— households form expectation E;(.) about the future.

R is exogenous here (partial equilibrium). With incomplete markets, the
only way to smooth consumption is to accumulate b (self-insurance).




Huggett Model Ill - Idiosyncratic Income (Shock)

In the continuous version, income follows an AR(1) process:
Ye=pYyi-1+e, e ~N(O, U§)~

To make the model computable, we discretize this process into a

finite-state Markov chain—e.g., using Tauchen method (Tauchen 1989).

1. Discrete income states:

vee{yhy", o yh<y

H
Agents can be in either a low-income or high-income state each period.

2. Transition probabilities:

T . .
i mjj = Pr(sey1 =j | ss = i), rowssum to 1.
THL  THH

» If 7y, is high, low-income households are likely to stay poor
(persistent inequality).

» If w1y is high, mobility from low to high income is frequent.


https://www.sciencedirect.com/science/article/pii/0165176586901680

Huggett Model Ill - Idiosyncratic Income (Shock)
3. Evolution of income distribution:
At time t, the probability of being in each state is

KLt
MH ¢

My =

1 , where uy+ =Pr(se = L), pn=Pr(ss=H).

The transition to t + 1 follows a first-order Markov process:

Bresr| | TL THL| Mg | | TLLBLe T THLEH
HH t+1 TLH THH| |MH,t TLHML e + THHUH,
—_——— — —
Ht+1 n’ Ht

» The t + 1 distribution is a weighted average of current states.

» Over time, pu, converges to p* satisfying u* = MT p*.



Household | - Primal Problem

Given current bond and income (state: by, y;), households choose
consumption and next-period bond (decision: ¢;, bi1) to maximize
expected lifetime utility:

max g Zﬂtu(ct)

{ct,bey1} +=0

subject to

Ct+bt+1:}/t+bt; )/t+1N'D(|Y)
ble, Cl’>0;

. bty
lim i

] BT = 0; (TVC rules out Ponzi schemes/explosive debts)
—00




Household Il - Recursive formulation (Bellman)

Bellman representation with state (b, y;):

l—0o
c
V(bt,yr) = max { : +8 Et[v(bt+1aYt+1) | }/t} } (1)
cbe1 L1 —0
2 yepr Neaalye) V(bean,yeen)
subject to
¢t + ber1 = yi + Rby, bir1 > by, ¢ >0 (2)

FOCs lead to decision rules:

ber1 = gb(be, yt), ¢t = 8c(be, i) = ye + Rb: — gu(be, yt)



Stationary Equilibrium | - Definition

A stationary equilibrium is a value function V(b, y), decision rules
gc(b,y) and gu(b,y), and a stationary (time-invariant distribution)
(b, y) over states B x Y such that:

1. Household optimality. For each (b, y), the policies g.(b, y) and
gu(b, y) solve the household Bellman problem given R and .

V(b.y) = max{u(e) + BE[V(6.y )yl }.

subject to constraints (2).

2. Stationarity of the cross-sectional distribution. Let 7 be the
Markov operator (law of motion) induced by b'(-) and the income
transition M. Then, the distribution p is stationary if u(-) = T u(-):

ply',b') = Z/Bﬂ(y’ | ¥)1{b' = b(b,y)} ju(b, y) db.

yey



Stationary Equilibrium Il - Definition

3. Bond market clearing.

Zégb(b,y)u(b,y) db = 0.

yey

Remark: In our partial-equilibrium Huggett benchmark, R is taken as
exogenous and condition (2) can be omitted. With fixed R, this model is
equivalent to an open economy (i.e., r constant at world rate) = there
may be net aggregate lending/borrowing due to foreign capital flows.



Calibration

Parameters
Preferences discount fac.tc_>r B =0.98
CRRA coefficient o =2
Credit limit  borrowing bound b= -2

endowment levels

y € {yL7yH} = {0.25, 3.0}

Shocks
.. . s T 06 04
transition matrix M= | -F HH =
THL THH 0.3 0.7
Table: Parameter values for calibration.
» b = —2 allows limited borrowing (if you tighten it, it will increase the

mass at the constraint and precautionary saving).
» In the basic Huggett benchmark, the gross return is fixed at = 1.02. In
Aiyagari model, we will endogenise it via market clearing.



Huggett Algorithm - Overview |

Goal: Compute the stationary equilibrium of the Huggett economy by
iterating on the Bellman equation (household problem) and the
distribution of agents.

Step 1: Discretize state space
bGB:{Q,...,E}, ye{yLayH}’
For each (b, y), the next-period choice b’ must satisfy
b>b c=y+Rb—b >0.
VFI iteration stage (detail in Appendix and lecture slides)

Step 2: Guess an initial value function V(©(b,y).

Step 3: Iterate on the Bellman operator
VD (b, y) = max {u(e) + BE[VI(,y)ly] }.

where ¢ = y + Rb — b’. The iteration continues until

VD — v B < gy



Huggett Algorithm - Overview |l
Step 4: Extract policy functions.

/x —
b —gb(ba)/)—3rgmb§x{v(b7)/)}7
and define ¢* = g.(b,y) =y + Rb — gy(b, y).

Stationary distribution stage (detail in Appendix and lecture slides)
Step 5: Compute the stationary distribution p(b, y).

> Initialize 1(®) (e.g. uniform density across all (b, y)).

» For each iteration:

W) = 3 [ Uen(b.y) = B a(y) (b y)db.
yey /B
» Interpolate when gy(b,y) lies between grid points.
> lterate until [|p(t+Y) — u®) < ¢,

Step 6: Market clearing (if R is endogenous): Adjust R until the bond
market clears:

Z/ng(b7)/)u(b,y)db:0.

yey



Huggett model vO.m | - Initialization

% —---- Solve Huggett-type model ----
clear all; close all; tic

%% [1] Parameters

Pv = 0.5%ones(1,2); % initial income weights
gsigma = 2.0; % CRRA coefficient
gbeta = 0.98; % discount factor

% Income shocks (two-state Markov)

yv = [0.25 3]; % y°L, y°H
P = [0.6 0.4; % [pi_LL, pi_LH;
0.3 0.7]; % pi_HL, pi_HH]
for i = 1:30, Pv = Pv * P; end % approach stationary weights

% Asset space (grid on bonds)

bmin = 0; % NOTE: use -2 for borrowing if desired
bmax = b5;
grid = round(100*(bmax - bmin)); % N points

bv linspace(bmin, bmax, grid)’; ’ Nzl column grid
gridstep = bv(2) - bv(1);
distance = bv(end) - bv(1);



Huggett model vO.m Il - Initialization

%% [2.]1 VFI + Stationary Distribution
% Fix R (Hugget PE)

r = 0.02;
R =1+ r;
Rold = 1;
iter = 0;

error = 100;
errorv = [];

%% [2.1] Value function iteration (decision rule for saving)

% initial guess V~(0) for both shocks (N x 2)
Vnext = [ (bv - bmin + 0.1)."(1-gsigma)/(1-gsigma),
(bv - bmin + 0.1).~(1-gsigma)/(1-gsigma) 1;
(P * Vnext’)’; % Nx2 expected value across shocks
Vnext; bbv = bv; 7/, reuse grid as column for choices

EV
Vnow

% bookkeeping for VFI loop
iterl = 0;

errorl = 100;

errorlv = 100;



Huggett model vO.m Ill - Value function iteration

while (iterl < 300 && errorl > le-4)
% Update expected continuation values

EV = (P * Vnext’)’; % Nx2, column z is E[V | current state z]
for i = 1l:grid % current asset b = bv(i)
for z = 1:2 % current income state (L/H)
income = yv(z) + R * bv(i); % cash on hand m_t
% vector of feasible consumption for all b’ in grid
cv = income - bbv; % Nx1

cv = (cv > 0).xcv + (cv <= 0)*1le-10; 7 positive c only
% value over all b’ choices for this (b_i, z)
vv = cv. (1-gsigma)/(1-gsigma) + gbeta * EV(:,z);

% maximise over b’ (store argmax)
[val, pos] = max(vv);

Bopt (i,z) = bbv(pos); % policy b’(b_i,z)
Copt(i,z) = cv(pos); % c(b_i,z)
Vnow(i,z) = val; % V- {new}(b_i,z)

end
end
% relative error across two consecutive iterations
errorl = 100 * sum(sum(abs(Vnow - Vnext))) / sum(sum(abs(Vnext)));
iterl = iterl + 1;
Vnext = Vnow; % update
end



Huggett model vO.m IV - Value function iteration

figure(1)
subplot(2,1,1);

plot(bv, Vnow);
legend(’Low’, ’High’);
xlabel(’b’);
title(’Value Function’);

subplot(2,1,2);
plot(bv, Bopt);
xlabel(’b_t’);

ylabel Cb_{t+1}°);
title(’Decision rule’);

saveas(gcf, ’Tutorialll_Figl.png’);



Hugget model v0.m - Policy and Value Functions
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Huggett model v0.m V - Stationary distribution

%% [2.2] Stationary distribution via linear interpolation
Mnow = ones(grid,2)/(grid*2); % uniform initial mass (Nx2)
iter2 = 0; error2 = 10;
while (iter2 < 1000 && error2 > 1le-10)
Mnext = zeros(grid,2);
for i = 1:grid
for z = 1:2
% locate b’(i,z) on the grid (interpolation)
posL = min(floor((Bopt(i,z)-bmin)/distance*grid) + 1, grid);
posL = round(posL) ;
if bv(posL) > Bopt(i,z), posL = posL - 1; end
posH = min(posL + 1, grid);
weight = (Bopt(i,z) - bv(posL)) / gridstep; 7 w_H
% transition across income states
transp = Mnow(i,z) * P(z,:); 7 1x2 mass moved to (L,H)
% distribute mass to neighboring b’ nodes
for zz = 1:2
Mnext (posL,zz) = Mnext(posL,zz) + (1-weight) * transp(zz);
Mnext (posH,zz) = Mnext(posH,zz) + weight * transp(zz);

end
end
end
error2 = sum(sum(abs(Mnext - Mnow)));
Mnow = Mnext; iter2 = iter2 + 1;

end



Huggett model v0O.m VI - Stationary distribution

%% [3.] Reporting results: PDF and CDF of assets
[rs,cs] = size(Mnow);

F = zeros(rs,cs);
F(1,:) = Mnow(1,:);
for z = 1:2
for i = 2:rs, F(i,z) = F(i-1,z) + Mnow(i,z); end
end
figure(2);
subplot(2,1,1);

plot(bv, Mnow); legend(’Low’,’High’);
xlabel(’b’); title(’Stationary Distribution: PDF’);

subplot(2,1,2);
plot(bv, sum(F,2)); xlabel(’b’); title(’Stationary Distribution: CDF’);

% Export
saveas(gcf, ’Tutorialll Fig2.png’);

toc



Hugget model vO.m - Distribution

Stationary Distribution:PDF
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Aiyagari Model



Huggett vs Aiyagari (what changes?)

Huggett

Aiyagari

Production side

Assets

Prices

Market clearing object

Risk/incompleteness

Resource constraint

Algorithm

None (endowment
economy). No firms.
One risk-free bond b;
zero net supply.

R exogenous

None (R* to clear bond
market if endogenous).
Idiosyncratic income y;
no Arrow securities;
borrowing limit.
Household budget only;
no production.

Fix R — VFI —
stationary p.

Representative firm with
Y = AK*H™ .
Physical capital k
accumulated by
households

r,w from firm FOCs at
(K, H); GE requires
K°=K?".

Aggregate capital K*
(equivalently r*, w*).
Idiosyncratic productivity
z; same incompleteness;
borrowing limit on k’.
C+K =Y+ (1-90)K
at the aggregate level.
Guess K — implied r, w
— VFI — stationary u
— implied Khew —
update until Khew = K.




Household |

Demography and preferences.

> A continuum of infinitely lived, ex-ante identical households (unit
mass).
» Preferences:

l1-0o

Eo Y Blu(c),  u(c)= Be(0,1), o >0.
t=0

1-0o’
» Each household is endowed with initial assets (physical capital) kg
and one unit of time per period.
» Leisure (/) is not valued in our baseline (inelastic). Extensions can
add /; as a disutility term in preferences.
Timing (per period).

1. State: Observe productivity z; and beginning-of-period assets
(capital) k;.

2. Decision: Choose consumption ¢; and next-period capital k;1.

3. Productivity z;11 is a stochastic component
— households form expectation E;(.) about the future.



Household I

Idiosyncratic risk.

» Two possible productivity states s € {L, H}. Labor productivity
z, € Z = {zt, z"} follows a Markov chain with transition matrix

n= {Wss’} with mser = 7T(Zt+1 =5 ‘ Zy = S).

Specifically: M = [WLL 7TLH:|
THL THH

» Labor income is w;z;, where w; is the market wage.

Assets and market incompleteness.

» Households save in one risk-free asset (physical capital) k¢i1,
yielding gross return Ry =1+ r;.

» No Arrow securities = idiosyncratic risk cannot be fully insured
(incomplete markets). Borrowing is limited by kmin.

Remark: This is virtually identical to Hugget's household, except the
idiosyncratic risk is associated with productivity (due to production economy)
rather than endowment. Additionally, instead of savings in bonds b, household
savings become future productive capital k'.



Household Ill: Recursive formulation (Bellman)

Given prices {w;, R;}, and current assets and realized productivity
(state: ki, z;), the household chooses consumption and next-period
assets (decision: c;, ki11) to solve:

l-0o

C
V(kt,Zt) = max { t + ﬁ Et[v(kt+1,zt+1) | Zt:l } (3)
Ct,ker1 1—-0
ZZHI M(ze+1|2e) V (kes1,2e41)
subject to the budget constraint
Ct + key1 = weze + Rike, ke > kmin, ¢ > 0. (4)

FOCs lead to decision rules:

ket1 = gk(kt,zt)7 Ct = gc(kt,zt) = w;z: + Rky — k(khzt)



Firm (Aiyagari production side)

Technology. A representative pcompetitive firm with Y = AK®H1—@
and depreciation 4.

The representative firm's problem is:

R {AKEH™ — wibe = ki

Factor prices (FOCs):
r=aAK Y tHTe g, w=(1-a)AK*H™?,
where aggregate effective labor H = >"_ z y(z) under inelastic labor.

Goods resource constraint (no government).

C+K =Y+ (1-9)K.



Stationary Equilibrium |

A stationary equilibrium consists of value function V/(k, z), decision
rules for current consumption gc(k, z) and next-period assets/capital
gx(k, z), time-invariant prices {w, R} for labor and capital, stationary
distribution u(k, z) and aggregate quantities { K, H, C} such that:

1. Household optimality. g.(k,z) and gk(k, z) solve the household
problem, given (r, w) and productivity transition [:

l-0o

c
V(k,z) = max {

l1—0o

+BE[V(K,Z)| 2]}

subject to constraints (4)

2. Firm optimality. Firm maximises profits:

max AKYH™% — wH — gK.
K,H

Factor prices (r, w) satisfy marginal product conditions:

w=(1-a)AK°H™™, qg=aAK* 'H'"® R=1+q-4.



Stationary Equilibrium Il

3. Stationarity of the joint distribution: The distribution u over
individual state (z, k) is stationary:

(k' 2') = 3 K = gk, 2)}n(2'|2) p(k, 2).
z k

where u(k, z) is the invariant measure over the state space (k, z).

4. Factor markets clear, and aggregates are given by

K=Y Y uk2)ekz), H=> > n(kz2)z,
k z k z
C=> > ulk z)gl(k 2).
k z

5. Aggregate resource constraint holds:

C+K =Y+ (1-0)K



Calibration

Parameters

discount factor 0.98
Preferences ) .

risk aversion o 2

TFP A 1
Technology

(o, 9) (0.36, 0.05)
Borrowing limit capital floor kmin 0

Shocks

productivity z € {z},z"}  {0.10, 1.00}

" 0.5 05
transitions [1
0.1 0.9

Table: Baseline Aiyagari calibration (Aiyagari model_v2.m).



Aiyagari Algorithm | - Value function iteration

(Remark: These Aiyagari VFI slides are adapted from the lecture slides.)

[1] Discretize the current asset space k = kv as a column vector of grid
points:
Kenin
kv = : (current capital grid).
k N

max Nx1

[2] Guess an initial value function for each shock state s € {L, H} (two
columns for zt, zH):

0.1 0.1
Vviter:1 _

0.1 01 |,.,



Aiyagari Algorithm Il - Value function iteration

[3] Candidate choices for next-period assets k' (same grid as kv):

kL
kkv = : = k' € {kkv(j)}L;.
kN

max Nx1

Feasible consumption vectors given current (k', z):

kkv
B _ /_/%
Cl kriin
cv(k,zH) = Dol = w2 (L) kv(i) — :
- c kN
size Nx1 L ] max
[ Cl | kn:'Ein
cv(k,z") = : = w2+ (1 +r)kv(i) - :
- cN kN
size Nx1 L | max




Aiyagari Algorithm Il - Value function iteration
[4] Iterate on Bellman operator:

For each current state pair (k' = kv(i), z), form the vector of RHS values
across all k" = kkv(j) choices and take a max.

Low state z':

VVL,iterJrl(ki) = max
R , j=1,...,

scalar

l1—0o

{ [wz' + (1 4+ 1) k(i) — Kk ())] o

+ B[ m WS kk())) + s VR (kv ()] }

High state z"':

-0
) ) wz 4+ (14 r) kv(i) — kkv(j)
VVH,lter+1(kl) o |: . - ]
N e’ J=L.. -

scalar

I
3
[ 5]
X
=2
—N

8 [WHL VWSS kv (7)) + mam VVH’ite'(kkv(j))] }

Store the argmax index j5-™(i) and jH™2%() to recover policies
k* = gi(k', zb) and kj; = gk(k’,z"), and corresponding values.



Aiyagari Algorithm IV - Value function iteration

[4] Update and repeat.

» After looping i = 1,..., N, stack the updated columns to get
Vviter+1 c RNX2.

» Compute the error and iterate until convergence:

error = || YVttt — yviter || < e

[5] Extract policy functions.
ge(k',25) = k(o™ (i), gk(k,2M) = kk(j (i),

ge(k',z) = wz + (L4 r) k' — gi(K', 2) for z € {4, 2"}



Aiyagari Algorithm | - Stationary Distribution
(Remark: These Aiyagari Stationary Distribution slides are adapted from

the lecture slides.)

[1] Stationarity condition. Given (R, w) and individual policies
gk(k,z), gc(k, z), the distribution p over individual states (k, z) is

stationary if

(k. 2') = 33 1K = gk, 2)}n(Z]2) p(k, 2)

z

[2] Representing distribution at iteration t, u(!)(k,z) as an N x 2 matrix:

p(k,z) =

columns: productivity (zt, z/),

M(t t
u )
u
(0
AN B2 o
rows: asset grid k*,... k.



Aiyagari Algorithm Il - Stationary Distribution

[3] Initialize (©) (e.g., uniform), and then iterate forward.
p(K 2 = Z Z YK = gk, 2)}n(2|z) pD(k, 2).
z k

Vector view:

t+1 +1
uﬁt)l u% pityy u§2 ]
(:f) (:t) S IS (r+1)
/‘L“]_ /‘L172 n, k':gk(k,z) /"Ll,l :u’l,2
:t :t t:+1 t+1
_MSV,)l MSV,)2_ _MSV,I ) N$v2 )_
—_——— | —
tnow(k,Z) Fnext(k’,2")

Because k' = gk(k, z) may land between grid points, we split mass to
neighbors (linear interpolation in code).



Aiyagari Algorithm Il - Stationary Distribution

[4] Iterate until the distribution converges (stationary)

[ = @O < ey,

(*) Like in Hugget model, individual policies g«(.), g-(.) obtained via VFI are
used to compute the stationary distribution p(.), thus completing the inner
iteration.

(**) However, in Aiyagari, there is an outer iteration (Gauss-Seidel) (i.e.,
VFI and stationary distribution blocks are nested inside the Gauss-Seidel
loop). Given individual policies, stationary household distribution, and °d
(from guess or previous iteration), we aggregate decisions across households
to obtain K'*! and other aggregate terms:

KT = Zz,u(k,z)gk(k,z)7 H= ZZM(k,Z)L
k z k z
C=3> nlk2)ge(k,2).
k z

We continue the outer iteration until [|[K™™ — K'|| < egs. See Aiyagari
Computational Method for the full solution algorithm.




Aiyagari model v2.m - Initialization

% —--—- Aiyagari Model ----
clear all; close all; tic

% Preferences
gbeta = 0.98; gsigma = 2.0;

% Technology
ghA =1.0; galpha

0.36; gdelta = 0.05;

% Idiosyncratic productivity (two-state Markov)
gPz = [0.5 0.5;

0.1 0.9];
gzv = 1.0%[0.1, 1]; 7 z'L, z"H
gzn = 2; % number of types

gPv = 0.5%ones(1,2);
for i=1:30; gPv=gPv*gPz; end
H = gPvxgzv’; % aggregate labor (given distribution over z)

% Discretize asset states

gkmin = 0; gkmax = 30; % min and max asset holdings
ggrid = 10*gkmax;

gkv = linspace(gkmin,gkmax,ggrid); % vector of k grid points
ggridstep = gkv(2)-gkv(1); % gridstep

gdist = gkmax-gkmin;



Aiyagari model v2.m - VFI 4+ Gauss-Seidel |

% Initialization for outer loop (Gauss-Seidel)

K = 0.01; Kold = K;
w =1.0;
r = 0.02; update = 0.1;

% Bookkeeping for Gauss-Seidel
iiter = 1; maxiiter = 30;
itoler = le-2; ierror = 100; 7 error for agg. capital

% [1.] Begin inner loop (Gauss-Seidel) - capital market clearing
% _________________________________________________________
while (ierror > itoler) && (iiter <= maxiiter)

% ---- Value function iteration (household) ----

% preallocate

Vnow = ones(ggrid,gzn)." (1-gsigma)/(1-gsigma);
Vnext = Vnow;

Vopt = Vnow;

Sopt = zeros(ggrid,gzn); 7 policy k’

Copt = zeros(ggrid,gzn); 7 policy c

jiter = 1;
jerror = 100;



Aiyagari model v2.m - VFI 4+ Gauss-Seidel Il

% [2.] Begin inner loop (household optimal decisions via VFI)

while (jerror > 1e-3) || (jiter < 200)
% Continuation values E_z’[V(k’,z’)] given Vnext guess/update
EVnext = zeros(ggrid,gzn);
for i = 1:ggrid
for z = 1:gzn
EVnext(i,z) = sum(Vnext(i,:).*gPz(z,:));

end
end
% Bellman equation (maximization over next-period assets k’)
for i = 1:ggrid % current k = gkv(i)

for z = 1:gzn % current productivity state

incomej = gzv(z)*w + (1+r)*gkv(i); 7 income (cash-on-hand)

% Feasible next k’ indices

% (ensure that c>=0 and k’ >= k_min constraints are met)
iimin = 1;

iimax = min(floor(ggrid*(incomej/gkmax)), ggrid);

if iimax < iimin, iimax = iimin; end

sii = zeros(iimax-iimin+1,1); % feasible s

cii = 10"-5*ones(iimax-iimin+1,1); % feasible c

vii = -lel2*ones(iimax-iimin+1,1); % feasible V



Aiyagari model v2.m - VFI + Gauss-Seidel Il

% Search for optimal k’ decision, implied c and V
for ii = iimin:iimax
sii(ii) = gkv(ii); % candidate for optimal k’
cii(ii) = incomej - sii(ii); % implied c
vii(ii) = cii(ii)~(1-gsigma)/(1l-gsigma) + gbeta*EVnext(ii,z);
end

% Extract optimal choice
[val,pos] = max(vii); % find max position
Sopt(i,z) = sii(pos); 7% optimal next-period asset holdings k’
Copt(i,z) = cii(pos); % optimal consumption
Vopt (i,z) val; % value function
end
end

% Error between two iterations

Vnext = Vopt; % Update Vnext for next iteration
jerror = norm(Vnext - Vnow); ’ Check convergence
Vnow = Vopt; % Update Vnow for next iteration

jiter = jiter + 1;
end % End of VFI for household optimal decision rules



Aiyagari model v2.m - VFI 4+ Gauss-Seidel 1V

% [3.] Stationary distribution given policy Sopt(k,z) and gPz

Mul = ones(ggrid,gzn)/(ggrid*gzn); 7 uniform initial mass
iter2 = 0; error2 = 10;

while (iter2 < 300) && (error2 > 10°-10)

Mu2 = zeros(ggrid,gzn);
% Find next-period mass (k’,z’) given (k,z)
for i = 1l:ggrid 7 k

for z = 1:gzn % z
—--- Next-period density of households holding k’ assets ---—-
locate k’ = Sopt(i,z) on the grid (linear interpolation)
% -> find gkv(posL) and gkv(posH): gkv(posL) <= k’ <= gkv(posH)
idx = (Sopt(i,z)-gkmin)/ggridstep + 1;
posL= max (1, min(floor(idx), ggrid-1));
% adjust to correct position
if gkv(posL) > Sopt(i,z)

posL = posL-1;

end
posH = min(posL+1l, ggrid);
% Assign weight s.t k’ = (1-weight)*gkv(posL) + weight*gkv(posH)
weight = (Sopt(i,z) - gkv(posL))/ggridstep;
weight = max(0, min(1l, weight));

N =
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% ——-— Next-period density of households with z’ ----
transp = Mul(i,z) * gPz(z,:);

% ——— Next-period joint density of households with (k’, z’) ----
% (based on density calculation above)
for zz = 1:gzn
Mu2(posL,zz) = Mu2(posL,zz) + (1-weight)*transp(zz);
Mu2(posH,zz) = Mu2(posH,zz) + weight*transp(zz);
end

end
end

% Check convergence of distribution

error2 = sum(sum(abs(Mu2 - Mul)));

Muil = Mu2 / sum(Mu2, ’all’); % update for next iteration
iter2 = iter2 + 1;

end % End of iteration for stationary distribution

Mu = Mul; 7 Store stationary distribution
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% [4.] Aggregation, price update, and find fixed point for K

o/ N

Knew = sum(sum(Mu .* Sopt)); ' aggregate capital from policy

ierror = abs((Knew - Kold)/max(le-12,Kold)); 7 check convergence in K

% Gauss-Seidel update on K (damps oscillations)
K = updatexKnew + (l-update)*Kold; 7, convex updating
Y = gA*Knew"galpha * H"(1-galpha); 7, implied output

% Update factor prices from firm FOCs

w = (1-galpha)*gA*K galpha*H" (-galpha) ;
q = galpha*gA*K~ (galpha-1)+*H" (1-galpha);
r = q - gdelta;

% Update/prepare for next iteration if convergence criterion not met
Kold = K;
iiter = iiter + 1;

end /, End of Gauss-Seidel iteration (Outer loop)



Aiyagari model v2.m - VFI 4+ Gauss-Seidel VII

% Get cumulative distribution (CDF) and mean values

Pjoin = Mu; % joint distribution over (k,z)
% CDF over k by z type
[rs,cs] = size(Pjoin);
Pcumz = zeros(rs,cs);
Pcumz(1,:) = Mu(1,:); %
% Create a cumulative distribution by productivity type
for z = 1:2

for i = 2:ggrid

Pcumz(i,z) = Pcumz(i-1,z) + Mu(i,z);

end

end

Pdis = sum(Mu, 2); % Marginal distribution over k
% CDF over k
[rs, cs] = size(Pdis);

Pcum = zeros(rs, cs);
Pcum(1) = Pdis(1);
for i = 2:ggrid,

Pcum(i) = Pcum(i-1) + Pdis(i);
end
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% Mean value of consumption and welfare
C = sum(sum(Mu .* Copt)); 7% average consumption
Welf = sum(sum(Mu .* Vopt)); 7 average value

disp(’—------- Results ---------- )8
disp([’Y = ’ num2str(Y)]1);
disp([’K = ’ num2str(K)]);
disp([’C = ’ num2str(C)]);
disp([’w = ’ num2str(w)]);
disp([’r = ’ num2str(r)]);

% Figures (values, policy, cdf by z, cdf)

figure(1)

subplot(2,2,1);
plot(gkv,Vnow(:,1),’-’,gkv,Vnow(:,2));

title(’Value Functions’);

xlabel(’k’); ylabel(’V(k,z)’); legend(’Low’,’High’);

subplot(2,2,2);
plot(gkv,Sopt(:,1),’-’,gkv,Sopt(:,2));
title(’Policy k’’(k,z)’);

xlabel(’k’); ylabel(’k’’’);
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subplot(2,2,3);
plot(gkv,sum(Mu,2));
title(’Distribution (PDF)’);
xlabel(’k’);

subplot(2,2,4);
plot(gkv,Pcum) ;
title(’Distribution (CDF)’);
xlabel (’k’);

toc



Aiyagari - Value Function, Policy and Distributions
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% PLOT LORENZ CURVES

% Get cumulative population share (sorted by k) (x axis)
Pdis = sum(Mu, 2);

pop_cum = cumsum(Pdis); % in [0,1]

% Get cumulative share of wealth/assets (y axis)

asset_mass = gkv(:) .* Pdis; / Wealth x mass at each k (grid point)
A_tot = sum(asset_mass); % Total assets

asset_cum = cumsum(asset_mass) / A_tot;

% Anchor with (0,0)
xL = [0; pop_cum]; yL = [0; asset_cum];

% Lorenz curve (all type)

figure(2);

subplot(1,2,1);

plot(xL, yL, ’LineWidth’, 1.5); hold on;
plot ([0 1], [0 1], ’k--’); hold off;
x1im([0 11); ylim([0 11);

xlabel (’Cumulative population share’);
ylabel(’Cumulative asset share’);
title(’Lorenz Curve of Asset Holdings’);
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% Per-type Lorenz curves (conditional within each z)
subplot(1,2,2);
hold on;
for z = 1:2
Pz = Mu(:,z);
if sum(Pz) > 0
Pz = Pz / sum(Pz);
xz = [0; cumsum(Pz)]; % Cumulative share of population
yz = [0; cumsum(gkv(:).*Pz) / sum(gkv(:).*Pz)]; 7 Cumulative
share of assets
plot(xz, yz, ’LineWidth’, 1.2);

end
end
plot ([0 1], [0 1], ’k--’); hold off;
x1im([0 1]1); ylim([0 1]);
xlabel (’Cumulative population share (type z)’);
ylabel (’Cumulative asset share (type z)’);
title(’Lorenz Curves by Productivity Type’);
legend(’z=1 (Low)’,’z=2 (High)’,’457\circ’,’Location’,’SouthEast’);

% Gini from the Lorenz curve

% (Gini = 1 - 2 * area under Lorenz curve)

area_L = trapz(xL, yL); 7’ trapezoidal area under Lorenz
Gini = 1 - 2*area_L;

fprintf(°Gini (assets) = %.4f\n’, Gini);



Aiyagari - Lorenz Curves (Wealth Inequality)

Lorenz Curve of Asset Holdings
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Remark: The wealth Gini implied by our baseline model is 0.225 (really small).

Empirical estimates for advanced economies typically range between 0.5 and
0.8.
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Household IlI: Optimality conditions (1/2)

Assuming an interior solution (b’ > b), the Euler equation is
u'(ce) = BRE[u'(cet1)]
With CRRA utility v/(¢c) = ¢ 7:
- BREf[ t+1}
Complementary slackness (borrowing constraint).
he >0, be1—b>0, he(ber1 —b) =0,

and the Euler becomes

u'(ct) = BRE[u'(cer1)] + he



Household IlI: Optimality conditions (2/2)

>

>

When the constraint binds (h: > 0) = u'(c:) > SRE:[v'(ce41)]:
households want to borrow to raise consumption but cannot.

o

Since ¢~ 7 is convex for all ¢ > 0 when o > 0, by Jensen's inequality:

Eley1] > (E[ca])™
Thus, holding the mean of cq41 fixed, any increase spread (risk) around
the mean or an increase in o makes the expected marginal utility of ct41
larger (E:[c, 9] 1). This leads households to save more (buffer stocks).

With SR < 1, the impatience condition prevents explosive saving paths
and ensures a stationary policy. To see this, consider a no-risk example

U/(Ct) = 5RU/(Ct+1)
BR < 1 mean uv'(c:) < u'(ce41) = ¢ > ces1. Thus, the household
does not want to keep increasing assets forever (the present is weighted

more heavily). If BR > 1, saving is so attractive that there is a tendency
to push assets upward without bound, leading to explosive savings path.

In this model, two forces meet: (i) Risk creates precautionary savings motive, push-
ing wealth up; (ii) Impatience places more weight on today’s consumption, pushing
wealth down. This tug-of-war yields a finite wealth-income ratio and a stable con-
sumption/saving path.




Huggett Algorithm - Value function iteration |

[1] Discretize asset space (current bonds).
bl
bi=b" € B={bpn=>b"....,b" =bpa}, b= |:|ecRVL
bN

Income is two-state: y € {y*, y"} with transition

n— |™eL TeH
THL THH

[2] Guess initial value functions (one vector per y)
V() = wly,  VP(b)=wly, eg v =01

So explicitly
0.1
vVOb)=| : |, se{LH}
0.1

Note: Each V¥ (b) is an N x 1 column: its ith entry is V¥ (b1).



Huggett Algorithm - Value function iteration Il
[3]: Choice set for next-period assets (the b’ grid).

bll = bmin
bi=beB =B b =|
blN - bmax

Cash on hand and feasible consumption vector for each pair (b', y*).

m(b',y®) = y* + Rb', c(b',y*) =m(b',y* 1y — b’ .
N x 1

scalar
The consumption vector for (b, y®) is therefore:
Cl m(bi,ys) _ b/l

by )=|:|= : , d>0, bY>b
CN m(bi,ys) _ blN

Note: Entries with ¢/ < 0 are ruled out (or given a large negative utility
penalty).



Huggett Algorithm - Value function iteration |lI
[4]: Iterate on Bellman operator.

Calculate utility for every (b, y*) combination:

, . u(ct)
u(b',y*) = u(c(b',y?)) =
u(cM)

Expected continuation value vector at iteration k for s € {L, H}:

7o VIO (BY) + man VO (b
EVI(b) = my VIO (b tman VIO (D) = :
o VL(k)(b/N) T ey Vf(,k)(b/N)

Bellman update at (b', y®).

V(k+1)(bi,y5) — u(bi,ys) + ﬁEng)(b/) GRNXI.



Huggett Algorithm - Value function iteration IV

Maximization and argmax index j*.

VED (B = max  vED(B)]], j* = argmaxv D (B[]
J

Policies:
g(b',y*) =[], ge(b,y%) = m(b',y*) = b'[j7].
[5] Convergence of values.

VD v < e



Huggett Algorithm - Stationary Distribution |

[1] Stationarity condition. The distribution of the individual state
variable (y, b) satisfies

ply',b') = Zzl{b’—gb b, y)}m(y'|y) uly, b),

where p(y, b) denotes the joint distribution of agents over current
income y and asset holdings b.

[2] Representing u(b, y) as an N x 2 matrix:
H1i1  H1,2
plb,y) = | min pi2 ,

BN N2 o

columns: income (yt, y"),  rows: asset grid b, ..., b"N.
Note: Each cell 4 s represents the fraction of agents with income y* and
current bond b'.



Huggett Algorithm - Stationary Distribution Il

[3] Propagate distribution forward.

Let pinow(b, y) denote the current density and pinext(b’, y’) the
next-period density.

! !
H11 12 Hi1 Hip2

transition

pnow(b,y) = | pin  pi2 et (b’ y") = | pin  pia

via 7(y’|y) and b'=gp(b,y)
M1 N2 N;v,l N;v,z
[4] Iterate to stationarity. Repeat until the distribution converges:
t+1 t
0D — || < e

Remark: Convergence = inflows = outflows for every state = stationary
cross-sectional distribution.



Aiyagari Household IV: FOCs and envelope

Euler conditions, combining interior (non-binding constraint, kiy1 > kmin)
and complementary slackness (binding constraint, kiy1 = Kmin):

&7 > BRE[cS | z),  keyr > Koin,

(Ct_a — ﬁRtE[C;_ﬂ | Zt]) (kt+1 — kmin) = 0

Intuition: interior solution arises when savings are above the borrowing
limit; otherwise, the borrowing constraint binds and the Euler inequality
is strict.

Envelope.
Vk(kt7zt) = Rt Ct_a.



Aiyagari Computational Method | - VFI 4+ Gauss-Seidel

Step 1. Discretize the household's state space.
> Set a lower and upper bound for assets/capital k € [kmin, kmax]-
» Discretize state space: k = {kmin, - - - » kmax} and idiosyncratic
productivity z € {zt, zH} with transition matrix I1.
Step 2. Guess aggregate capital K(©.
» Given K©) compute factor prices using the firm's FOCs:

H -«
0 __ 0 __ 0)\apy—«

Remark: H is fixed (inelastic labour) — we do not need to guess H(®
here.

Step 3. Given ry and wy, solve the household problem using VFI.

V(k,z) = max

= Kmin

{u(c)+BE[V(k’,z’)|z]}, st c=wlz+(1+r0)k—K

> iterate the value function until convergence to obtain optimal
decision rules gk(k, z) and g.(k, z).



Aiyagari Computational Method Il - VFI + Gauss-Seidel

Step 4. Compute the stationary distribution
» Given gi(k, z) and MN(Z’|z), update the distribution:

plED( ZZl{k’ = gi(k,2)IN(Z'|2) ' (k, 2).

> Iterate until gt = ;1)
Step 5. Aggregation.

» Compute aggregate capital, labor, and consumption:

:Zzu(k72)gk(kvz)’ H:ZZM(I(,Z)Z
C=>" ulk 2)gc(k,2).
k z

» Compute implied prices (r!, w?)



Aiyagari Computational Method Il - VFI + Gauss-Seidel

Step 6. Check market clearing
> If [K() — KOO)] < 45, equilibrium found.

» Else, update:

KO =(1-2a)K® +ak®, 0<a<l,

Step 7. Repeat Steps 2-6 for K2, K(3) . K(iterma) yntil convergence
in K (capital market clears).
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