Macroeconomic Theory -
Overlapping Generations (OLG) Households in
General Equilibrium Framework

Darapheak Tin

Research School of Economics,
Australian National University

Sample Teaching Slides Il

http://darapheaktin.github.io

Table of Contents

Two-Period OLG with Competitive Firm (DGE OLG)
Setup
Household - Lagrangian Approach
Household - Dynamic Programming Approach

Solution Method 1: Fsolve

Solution Method 2: Gauss—Seidel (G-S)
Results Comparison

Supplementary material

Environment

» Time is discrete.

» Closed economy with a representative competitive firm.

» Competitive market: Prices (w, r) are taken as given by households.
» Overlapping generations (OLG) of households:

o Each period, a new generation is born and lives for two periods
(young — old).

o Young supply inelastic labour (one unit).

o Old retire.

Household problem

A household earns wage income w in period 1, chooses (ci, ¢;) to
maximize lifetime utility:

e —0o

1
<) }
c?:]sa,)éz { l1—0o + ﬁl—a

subject to

a+s=w,
o=(14+1r)s,
Ci, >0

Firm and pricing

A representative firm with Cobb-Douglas technology. The firm's profit
maximization problem is:

n;}aLx{AKo‘Nl_a — whN — gK}

and the net interest rate is

Baseline calibration (for simulations later)

Parameter Value
Discount factor 15} 0.98
Risk aversion o 2
TFP level A 1
Capital share « 0.33
Depreciation) 0.05

Firm Problem

Firm chooses (K, N) to maximize profit:

max {AK"‘Nl‘O‘ — W — qK}.

)

FOCs:

w= (1 - a)AK N,
g = aAK*INT T,

Lagrangian Approach - Household Optimization (1/2)

Household problem:

lecr leg
L(c1, e, A) = max L 452 +)\(W7C17%) .
—0

First-order conditions (FOCs):

oL .

aicl: Cl _)\—0

oL »

67C2: BCz _%HZO
oL

a: w—c %:O

Combining:
1 1/,\-=
C]_:A_a', C2:)_o'<i>

where R=1+r.

Lagrangian Approach - Household Optimization (2/2)

Plugging into the budget constraint:

e

Therefore, the optimal consumption-saving rule is

q =

-

w

1+ 3(&)]

S=w—(C

G =

Lagrangian Approach - Competitive Equilibrium

The CE is characterized by the following system of equations:

s=w— ¢,
N=1,
K =s,

w=(1-a)AK“N~,
R =14 aAK* 1IN — 5,
Y = AKONT©,

Exogenous variables: {3,0,A, «,d}.
Endogenous variables: {c1, o, s, w,r, K, N, Y}.

Dynamic Programming Approach - Household (1/4)

We turn the household problem into a recursive problem. For the general
case, we have:

l—0o
Vi(at) = max { °t + th+1(at+1)}‘

Ct, at+1 — 0

s.t.
—s —we
Ct +’a-:: = f;/t\+Rat when young (working life)
¢t + a1 = Ra; when old (retirement)

where a; is asset holding (asset holding today a; = savings from
yesterday s;_1). Key assumptions:

» Born with no asset: a; =0

» Terminal conditions:
VT+1(3T+1) =0 = VT(aT) = U((]. + r)aT)
———

cT

Dynamic Programming Approach - Household (2/4)

For our specific case where the households live for two period (young and
old), the recursive formulation can be expressed as:

l-0o

Period 1: Vi(a;) = max{ ! +ﬂV2(ag)} st..at+ta=n+R a
a,2l—0 —~—
=0
lecr
Period 2: V;(ay) = max{ 2 + B Vs(as) } st. o+az= y» +Ra
a,all—0 N—— ~—~

=0 =0
Assumptions: a; = 0 (born with no asset), yy =w, o =0, R=1+r,
and life ends after two periods so V3(a3) = 0.

We proceed to solve the household problem by backward induction: first
period 2 (consume all), then period 1 (choose ay).

Dynamic Programming Approach - Household (3/4)

The Bellman equation in period 2 is:

l—0o

Va(az) = max st. oo =(14r)a.

[} — 0

» No income in period 2 (y» = 0) and no savings in period 3 (a3 = 0)
» Thus, optimal consumption ¢; = (1 + r)ay, and the value function is

[(1+r)ap]' ™

l1—0

Vz(az) =

» Marginal value function:

8\/2(32)

oo (1+r) a0 "

Dynamic Programming Approach - Household (4/4)

Given V,(ay), Bellman equation in period 1 is:

a Va(a2)
— ’ 1o
— g 1 o
Vl(al) = max { (£ 2) + 6 [(+ r)a2] }
a 1—-0 1—-0

Taking FOC wrt a:
~n—a) 7+ AL+) (a) 7 =0

Solving the FOC, the optimal plan is:

L _[_GRYe

2 = R+(6R)1/C’ 321
G=Y1—a

¢ = Ra

where R = (1+r).

Dynamic Programming Approach - CE
Competitive equilibrium characterized by:

=51

= [
R+ (BR)Y |77
€1 =Yy1— a2,
¢ = Ray,
N =1,
K = ap,

w=(1-a)AK*N~,
R =1+ aAK* IN—> g,
Y = AK*NT—2,

Exogenous: {§,0,A, «, 0}
Endogenous: {ci, ¢z, a2, w, R, K, N, Y}

Solution Method 1: Fsolve

Fsolve - sol GE sys residuals.m (1/2)

We stack all equilibrium conditions as residuals F(X) = 0 and use a
nonlinear solver £solve to find the unknowns X:

Unknowns: X = [cl, c, s, w, r, K, N, Y

Parameters: {8,0, A, a,d}

Residual system F(X) = 0:

F12

FQZ

Fs:
Fy:
Fs:
Fe :
F:
Fg:

B 7 -

C1+%—W:0
s+c—w=0
w—(1-a)AK“N"*=0
r—aAKINT= £ 5 =0
N—-1=0

K—s=0

Y — AKN'=2 =0

]T

(Euler)

Budget)

Savings)

Firm: wage)

Labour market)

(
(
(
(Firm: interest)
(
(Capital market)
(

Production)

Fsolve - sol GE sys residuals.m (2/2)

function [c_1,c_2,s,w,r,K,N,Y] = sol_GE_sys_residuals(beta,sigma,A,alpha
,delta,X0);

options = optimset(’Display’, ’off’); 7 Turn off Display

fsolve(@cFOCs_f, X0, optiomns); % call fsolve
function F = cFOCs_f (X) % define the function F with X

% unpack input arguments
c_1 = X(@); c_2 = X(2);
s = X(3);
v = X(4); r =X(5);
K = X(8); N = X(7;
Y =X(@®);
% system of equilibrium equations (residuals)
F(1) = betaxc_2" (-sigma) - c_1"(-sigma)/(1+r);
F(2) =c_1+ c_2/(1+r)- w;
F(3) =s +c_1-w;
F(4) = w - (1-alpha)*AxK~alpha*N~(-alpha);
F(5) = r - alpha*A*K~(alpha-1)*N~(1-alpha) + delta;
F(6) =N - 1;
F(7) =K - s;
F(8) = Y - A*K"alpha*N~(1-alpha);

end
end

Fsolve - sol GE Fsolve.m

% —-—-- MAIN SCRIPT ---—- %
clear; close all; clc

% Parameters (one period = 30 years)
beta = 0.95730;

sigma = 2;
A =1;
alpha = 0.33;

delta = 1 - (1-0.05)"30;

% Initial guess for endo. vars: [cl c2 s wr K N Y]
X0 = [0.5, 0.5, 0.2, 0.8, 0.02, 0.2, 1.0, 1.0];

% Solve
[c_1,c_2,s,w,r,K,N,Y] = ...
sol_GE_sys_residuals(beta,sigma,A,alpha,delta,X0);

% Print results

disp(’---- Results---——-—-—-—-—---—- ')

disp([’Y =’ num2str(Y)]);

disp([’K =’ num2str(X)]1);

disp([°’N =’ num2str(N)]);

disp([’R =’ num2str((1+r)"~(1/30))]); %annualised gross return
disp([’w =’ num2str(w)]);

disp(’)

Solution Method 2: Gauss—Seidel
(G-S)

Gauss—Seidel Algorithm (Step-by-Step)

Objective: Instead of relying on fsolve to solve the entire system of CE
conditions, we solve the model by iterating between household and firm
decisions until capital converges.

1. Initial guess: Pick a starting value for capital K(®) and compute
implied market prices: w and R.

2. Household problem: Given (w, R), solve for optimal savings s; (or
equivalently asset holdings a,).

3. Update capital: K(+1) = sfi) or K(+1) = ag) and recompute
market prices using the firm's FOCs based on the updated K(+1),

4. Check convergence: Compare new and old capital levels:
Error = ‘KUH) - K(i)’

5. Stopping rule: If error < tolerance (e.g., 1073), stop. Otherwise,
return to step 2.

Intuition: The algorithm iteratively adjusts K until households’ saving
decisions are consistent with firms' capital demands (i.e., the goods and
factor markets clear).

Gauss—Seidel - sol_GE_GaussSeideil DP_Lagr.m (1/4)

clear all; close all

tic

disp(’——----—--- New run --------- OF

% Parameter values

beta = 0.95730; 7%0.9324730; 7% 0.9324
sigma = 2;

A =1;

alpha = .33;

delta =1 - (1-.05)"30;

% Initials

Kold = .01;

Nold = 1;

W = (1-alpha) * A * Kold"alpha * Nold~(-alpha);

R = 1 + alpha * A * Kold"(alpha-1) * Nold~(1-alpha) - delta;

% for iteration

error = 100;
errorv = 100;
iter = 0;
itermax = 50;
tol = .001;

update = .5;

Household - sol GE GaussSeideil DP Lagr.m

Given w, R, the household chooses ci, ¢, s1, using one of the three
methods (user’s choice):

» Method 0 (Lagrangian): Solve FOCs analytically.

» Method 1 (DP with FOC): Closed-form savings rule from Euler
equation obtained through solving DP analytically.

> Method 2 (DP with Value Function): Discretise asset space,
search for s; that maximises V;.

Gauss—Seidel - sol_GE_GaussSeideil DP_Lagr.m (2/4)

while (iter<itermax)&&(error>tol)

% [1.] Solving the household problem (3 different methods)

I.DP = 2;

A

if I_DP==0 % Lagrangian using FOCs
lambda_sig=w/(1+(1/R)*(1/(Rxbeta)) " (-1/sigma)) ;
c_1 = lambda_sig; c_2 = lambda_sig*(1/(R*beta)) (-1/sigma);
s_1=w-c_1;

elseif I_DP==1 J, Dynamic programming using FOCs

s_1 = (R#beta) (1/sigma)/(R+(R*beta)”(1/sigma))*w; % a_2 = s_1
c_.l=w-s_1; c_2 = Rxs_1;
elseif I_DP==2 J, Dynamic programming method using value function

% Asset space (a2 = sl1), step size = w/100
slv = [0:w/100:2*w]; 7 coarser grid
%siv = [0:w/1000:2*w]; % finer grid
V2v = (R*slv)." (1-sigma)/(1-sigma); 7 Value over the asset space
clv = w - slv; % possible choices for consumption 1
% find value function for V1
Viv = (c1v>0).*clv. (1-sigma)/(1-sigma) + (clv<=0).*(-10710) +
beta*xV2v;
% find the max value of the value function and optimal saving
[val,pos] = max(Viv);
s_1 = siv(pos); 7% optimal saving/asset
c_1=w-s_1; c_2 = Rxs_1;
end

Gauss—Seidel - sol_GE_GaussSeideil DP_Lagr.m (3/4)

% [.2] Clearing the labor and capital markets
N = 1; % inelastic labor
Knew = s_1; J, capital

% Use onvex updating rule for capital for stabiity
K = updatexKold + (1-update)*Knew;

% [.3] Using the firm’s FOCs to pin down factor prices

W = (1-alpha)*A*K~alpha*N~(-alpha) ;
q = alpha*A*K~ (alpha-1)*N~(1-alpha);
% Interest rate

r = q - delta;

R =1+ r;

% Output

Y = A*K~ (alpha)*N~ (1-alpha) ;

% [.4] the convergence condition and updates for next interation
error = 100*abs(K - Kold)/Kold; 7 error in percentage
errorv = [errorv error];

%
Kold = K;
iter = iter+i1;

end

Gauss—Seidel - sol_GE_GaussSeideil DP_Lagr.m (4/4)

disp(’---- Results——-----——----———- OF

disp([’Y =’ num2str(Y)]1);

disp([’K =’ num2str(X)]);

disp([°’N =’ num2str(N)]);

disp([’R =’ num2str(R~(1/30))1); ’ annualised
disp([’w =’ num2str(w)]);

disp([’error=’ num2str(error)l);
disp(’ ok

toc

G-S - Analytical vs. DP (Numerical) Household Sol. (1/2)

(i) Analytical (i) DP, step size = 355 (iii) DP, step size = 1555

Y 0.40049 0.39807 0.40062
K 0.062477 0.061342 0.062540
N 1.00000 1.00000 1.00000
R 1.02860 1.02900 1.02860
w 0.26833 0.26671 0.26842
error 0.00086253 0.00076821 0.00079105
Runtime (s) 0.039171 0.042734 0.051140

» (i) Household problem solved analytically (I_DP==0/1)

» (i) and (iii) solved by value search on discretized asset grid (I_DP==2)

» (i) is nice, but many problems have no closed-form solution — use (i)/(ii)
| 4

All runs use the same Gauss—Seidel relaxation, tolerance, and production
parameters

G-S - Analytical vs. DP (Numerical) Household Sol. (2/2)
Level differences are small but systematic:
» DP with coarser grid (ii) produces slightly lower K and Y relative to
analytical (i).
» Finer grid (iii) brings DP back in line with analytical: K and Y
essentially match (differences at < 107%).

Prices and wages move accordingly:

» With lower K in (ii), the wage w is a bit lower and R a touch higher
(marginal products respond to capital).

» In (i), w and R revert to analytical values.

Runtime:
» Runtime rises modestly with grid refinement.

Intuition: Coarser grids tend to lead low-asset households to under-save due to
fewer saving choices. This biases K and Y downward.
Trade-off: Finer grids improve accuracy but increase computational burden (slower).

Solution: A potential solution is using

Supplementary Material

Motivation: Why Non-Uniform Grids?

Uniform grids: a; = apin + i x Aa (for i =0,1,...,n— 1) use equal
spacing. Simple but inefficient when:

» The value or policy function is highly curved near
constraints/endpoints (e.g. borrowing limit).

» Optimal savings of low-asset agents can be tiny so coarse uniform
grids may not offer this option, forcing them to consume everything
(to avoid ¢ = 0).

Solution: use non-uniform grids that place more points where accuracy
matters (and fewer where it does not), improving accuracy without
increasing number of grid points (computational cost).

We consider two discretization methods:
1. Left-dense grid: dense near any,, (borrowing constraint).

2. Chebyshev-Lobatto grid: dense near both ami, and amax (Not
applicable here).

Left-Dense (Power-Transformed) Grid (1/2)

Formula:
grid(t) = amin + (amax — amin) t*, t€[0,1], p>1

Code:

function grid = left_dense_grid(amin, amax, n, p)
% Left-dense non-uniform grid on [amin, amax]:
% (You need to set p>1 so points cluster near amin)

t = linspace(0,1,n); % uniform in [0,1]
grid = amin + (amax-amin)*(t."p); 7’ convex warp clusters left
grid(1)=amin; grid(end)=amax; % exact endpoints

end

Intuition:

1. Start with a uniform grid t = [0, -1, ..., 1].
2. Apply a nonlinear stretch t — t”.

3. Since f(t) = tP is convex for p > 1, points dense near amin and
sparse near amax.

Left-Dense (Power-Transformed) Grid (2/2)

Numerical illustration:

t t! (linear) t2 t3
0.00 0.00 0.00 0.00
0.25 0.25 0.06 0.02
0.50 0.50 0.25 0.13
0.75 0.75 0.56 0.42
1.00 1.00 1.00 1.00
Parameter choice and effects:
P Spacing pattern Typical use
1 uniform baseline (equal spacing)
>1 dense near ani, capture curvature near borrowing bound

0< p<1l dense near amax

capture behaviour at high wealth

Chebyshev-Lobatto Grid (1/2)

Goal: Create dense grid near both ends [amin, dmax]-

Formula:)
J .
.= R =0,1,...,n—1
fj COS<7T n_1)7 J = 7n
Amin T dmax dmax — dmin
I TS
Code:

function grid = cheb_lobatto_grid(amin, amax, n)
% ChebyshevaLobatto nodes on [amin, amax].
% (points bunch/dense near both ends)

j = 0:(n-1);

xi = cos(pi * j / (n-1)); % nodes on [-1,1]
centre = 0.5*(amin+amax) ;

g = centre + 0.5%(amax-amin)*xi;

grid = sort(g,’ascend’); % ascending order
grid(1)=amin; grid(end)=amax; % pin exact endpoints

end

Chebyshev-Lobatto Grid (2/2)

Let n =5 and interval [0, 10].

Step 1: equally spaced angles

Step 2: take cosines
¢ =1, 0.707, 0, —0.707, —1].
Step 3: map to [0, 10]
a=5+5¢ =10, 8.535, 5, 1.465, 0].

Step 4: sort ascending = [0, 1.465, 5, 8.535, 10].

Observation: short gaps near 0 and 10, wide gaps in the middle.

Why cosine creates endpoint clustering?

Cosine basics:
x =cos(f), 0¢€]0,n]
gives x € [—1,1].
If we take equal angular steps in 6 from 6; = {0, ﬁm o 2) the

’ n—1
corresponding x's are not equally spaced. In fact, x(6;) will be dense

near both endpoints -1 and 1 and sparse around the centre.

Consider derivative:

dx)
@—fsmﬁ

» Near § =0 or 7, sinf =~ 0 = x changes slowly, causing points to

crowd near +1.

» In the middle (6 =~ 7/2), sinf = 1, causing x to change quickly and
therefore points spaced wider.

Gauss—Seidel - sol GE GaussSeideil DP Lagr v1.m

while (iter<itermax)&&(error>tol)

elseif I_DP==2 J, Dynamic programming method using value function

% DIFFERENT DISCRETIZATION METHODS

— N R

% [a.] Uniform

%slv = make_grid(’uniform’, 0, 2*w, 201);
%slv = make_grid(Puniform’, 0, 2*w, 2001);

% [b.] Growing grid (left dense)
slv = make_grid(’left_dense’, 0, 2*w, 201);
%slv = make_grid(’left_dense’, 0, 2*w, 2001);

% [c.] Chebyshev (dense near both endpoints)
% (Not suitable for this problem)
%slv = make_grid(’cheb’, 0, 2*w, 201);

V2v = (R#slv).” (1-sigma)/(1-sigma);

end

	Two-Period OLG with Competitive Firm (DGE OLG)
	Setup
	Household - Lagrangian Approach
	Household - Dynamic Programming Approach

	Solution Method 1: Fsolve
	Solution Method 2: Gauss–Seidel (G-S)
	Results Comparison

	Supplementary material
	Appendix
	Appendix

