
1/28

Macroeconomic Theory -
Overlapping Generations (OLG) Households in

General Equilibrium Framework

Darapheak Tin

Research School of Economics,
Australian National University

Sample Teaching Slides II

http://darapheaktin.github.io


2/28

Table of Contents

Two-Period OLG with Competitive Firm (DGE OLG)
Setup
Household - Lagrangian Approach
Household - Dynamic Programming Approach

Solution Method 1: Fsolve

Solution Method 2: Gauss–Seidel (G-S)
Results Comparison

Supplementary material



3/28

Environment

▶ Time is discrete.

▶ Closed economy with a representative competitive firm.

▶ Competitive market: Prices (w , r) are taken as given by households.

▶ Overlapping generations (OLG) of households:

◦ Each period, a new generation is born and lives for two periods
(young → old).

◦ Young supply inelastic labour (one unit).

◦ Old retire.



4/28

Household problem

A household earns wage income w in period 1, chooses (c1, c2) to
maximize lifetime utility:

max
c1, s, c2

{ c 1−σ
1

1− σ
+ β

c 1−σ
2

1− σ

}
subject to

c1 + s = w ,

c2 = (1 + r) s,

c1, c2 > 0



5/28

Firm and pricing

A representative firm with Cobb-Douglas technology. The firm’s profit
maximization problem is:

max
K ,L

{AKαN1−α − wN − qK}

and the net interest rate is

r = q − δ, δ ∈ (0, 1).



6/28

Baseline calibration (for simulations later)

Parameter Value

Discount factor β 0.98

Risk aversion σ 2

TFP level A 1

Capital share α 0.33

Depreciation δ 0.05



7/28

Firm Problem

Firm chooses (K ,N) to maximize profit:

max
K ,N

{
AKαN1−α − wN − qK

}
.

FOCs:

w = (1− α)AKαN−α,

q = αAKα−1N1−α.



8/28

Lagrangian Approach - Household Optimization (1/2)

Household problem:

L(c1, c2, λ) = max
c1,c2,λ

{
c1−σ
1

1− σ
+ β

c1−σ
2

1− σ
+ λ

(
w − c1 − c2

1+r

)}
.

First-order conditions (FOCs):

∂L

∂c1
: c−σ

1 − λ = 0

∂L

∂c2
: βc−σ

2 − λ
1+r = 0

∂L

∂λ
: w − c1 − c2

1+r = 0

Combining:

c1 = λ− 1
σ , c2 = λ− 1

σ

(
1
Rβ

)− 1
σ

where R = 1 + r .



9/28

Lagrangian Approach - Household Optimization (2/2)

Plugging into the budget constraint:

λ− 1
σ =

w[
1 + 1

R

(
1
Rβ

)− 1
σ
] .

Therefore, the optimal consumption-saving rule is

c1 =
w[

1 + 1
R

(
1
Rβ

)− 1
σ
]

s = w − c1



10/28

Lagrangian Approach - Competitive Equilibrium

The CE is characterized by the following system of equations:

λ− 1
σ =

w[
1 + 1

R

(
1
Rβ

)− 1
σ
] , (1)

c1 = λ− 1
σ , (2)

c2 = λ− 1
σ

(
1
Rβ

)− 1
σ

, (3)

s = w − c1, (4)

N = 1, (5)

K = s, (6)

w = (1− α)AKαN−α, (7)

R = 1 + αAKα−1N1−α − δ, (8)

Y = AKαN1−α. (9)

Exogenous variables: {β, σ,A, α, δ}.
Endogenous variables: {c1, c2, s,w , r ,K ,N,Y }.



11/28

Dynamic Programming Approach - Household (1/4)

We turn the household problem into a recursive problem. For the general
case, we have:

Vt(at) = max
ct , at+1

{
c1−σ
t

1− σ
+ βVt+1(at+1)

}
.

s.t.

ct +

=st︷︸︸︷
at+1 =

=wt︷︸︸︷
yt +Rat when young (working life)

ct + at+1 = Rat when old (retirement)

where at is asset holding (asset holding today at = savings from
yesterday st−1). Key assumptions:

▶ Born with no asset: a1 = 0

▶ Terminal conditions:
VT+1(aT+1) = 0 ⇒ VT (aT ) = u((1 + r)aT︸ ︷︷ ︸

cT

)



12/28

Dynamic Programming Approach - Household (2/4)

For our specific case where the households live for two period (young and
old), the recursive formulation can be expressed as:

Period 1 : V1(a1) = max
c1, a2

{ c1−σ
1

1− σ
+ βV2(a2)

}
s.t. c1 + a2 = y1 + R a1︸︷︷︸

=0

Period 2 : V2(a2) = max
c2, a3

{ c1−σ
2

1− σ
+ β V3(a3)︸ ︷︷ ︸

=0

}
s.t. c2 + a3 = y2︸︷︷︸

=0

+Ra2

Assumptions: a1 = 0 (born with no asset), y1 = w , y2 = 0, R = 1 + r ,
and life ends after two periods so V3(a3) ≡ 0.

We proceed to solve the household problem by backward induction: first
period 2 (consume all), then period 1 (choose a2).



13/28

Dynamic Programming Approach - Household (3/4)

The Bellman equation in period 2 is:

V2(a2) = max
c2

c1−σ
2

1− σ
s.t. c2 = (1 + r)a2.

▶ No income in period 2 (y2 = 0) and no savings in period 3 (a3 = 0)

▶ Thus, optimal consumption c2 = (1+ r)a2, and the value function is

V2(a2) =
[(1 + r)a2]

1−σ

1− σ

▶ Marginal value function:

∂V2(a2)

∂a2
= (1 + r)1−σ[a2]

−σ



14/28

Dynamic Programming Approach - Household (4/4)

Given V2(a2), Bellman equation in period 1 is:

V1(a1) = max
a2

{
(

c1︷ ︸︸ ︷
y1 − a2 )

1−σ

1− σ
+ β

V2(a2)︷ ︸︸ ︷
[(1 + r)a2]

1−σ

1− σ

}

Taking FOC wrt a2:

−(y1 − a2)
−σ + β(1 + r)1−σ(a2)

−σ = 0.

Solving the FOC, the optimal plan is:

a2 =

[
(βR)1/σ

R + (βR)1/σ

]
y1

c1 = y1 − a2

c2 = Ra2

where R ≡ (1 + r).



15/28

Dynamic Programming Approach - CE

Competitive equilibrium characterized by:

=s1︷︸︸︷
a2 =

[
(βR)1/σ

R + (βR)1/σ

]
y1,

c1 = y1 − a2,

c2 = Ra2,

N = 1,

K = a2,

w = (1− α)AKαN−α,

R = 1 + αAKα−1N1−α − δ,

Y = AKαN1−α.

Exogenous: {β, σ,A, α, δ}
Endogenous: {c1, c2, a2,w ,R,K ,N,Y }



16/28

Solution Method 1: Fsolve



17/28

Fsolve - sol GE sys residuals.m (1/2)
We stack all equilibrium conditions as residuals F (X ) = 0 and use a
nonlinear solver fsolve to find the unknowns X :

Unknowns: X =
[
c1, c2, s, w , r , K , N, Y

]⊤
Parameters: {β, σ,A, α, δ}

Residual system F (X ) = 0:

F1 : βc−σ
2 − c−σ

1

1 + r
= 0 (Euler)

F2 : c1 +
c2

1 + r
− w = 0 (Budget)

F3 : s + c1 − w = 0 (Savings)

F4 : w − (1− α)AKαN−α = 0 (Firm: wage)

F5 : r − αAKα−1N1−α + δ = 0 (Firm: interest)

F6 : N − 1 = 0 (Labour market)

F7 : K − s = 0 (Capital market)

F8 : Y − AKαN1−α = 0 (Production)



18/28

Fsolve - sol GE sys residuals.m (2/2)

function [c_1,c_2,s,w,r,K,N,Y] = sol_GE_sys_residuals(beta,sigma,A,alpha

,delta,X0);

options = optimset(’Display’, ’off’); % Turn off Display

fsolve(@cFOCs_f, X0, options); % call fsolve

function F = cFOCs_f(X) % define the function F with X

% unpack input arguments

c_1 = X(1); c_2 = X(2);

s = X(3);

w = X(4); r = X(5);

K = X(6); N = X(7);

Y = X(8);

% system of equilibrium equations (residuals)

F(1) = beta*c_2^(-sigma) - c_1^(-sigma)/(1+r);

F(2) = c_1 + c_2/(1+r)- w;

F(3) = s + c_1 - w;

F(4) = w - (1-alpha)*A*K^alpha*N^(-alpha);

F(5) = r - alpha*A*K^(alpha-1)*N^(1-alpha) + delta;

F(6) = N - 1;

F(7) = K - s;

F(8) = Y - A*K^alpha*N^(1-alpha);

end

end



19/28

Fsolve - sol GE Fsolve.m
% ---- MAIN SCRIPT ---- %

clear; close all; clc

% Parameters (one period = 30 years)

beta = 0.95^30;

sigma = 2;

A = 1;

alpha = 0.33;

delta = 1 - (1-0.05)^30;

% Initial guess for endo. vars: [c1 c2 s w r K N Y]

X0 = [0.5, 0.5, 0.2, 0.8, 0.02, 0.2, 1.0, 1.0];

% Solve

[c_1,c_2,s,w,r,K,N,Y] = ...

sol_GE_sys_residuals(beta,sigma,A,alpha,delta,X0);

% Print results

disp(’---- Results---------------- ’);

disp([’Y =’ num2str(Y)]);

disp([’K =’ num2str(K)]);

disp([’N =’ num2str(N)]);

disp([’R =’ num2str((1+r)^(1/30))]); %annualised gross return

disp([’w =’ num2str(w)]);

disp(’-------------------------- ’);



20/28

Solution Method 2: Gauss–Seidel
(G-S)



21/28

Gauss–Seidel Algorithm (Step-by-Step)
Objective: Instead of relying on fsolve to solve the entire system of CE
conditions, we solve the model by iterating between household and firm
decisions until capital converges.

1. Initial guess: Pick a starting value for capital K (0) and compute
implied market prices: w and R.

2. Household problem: Given (w ,R), solve for optimal savings s1 (or
equivalently asset holdings a2).

3. Update capital: K (i+1) = s
(i)
1 or K (i+1) = a

(i)
2 and recompute

market prices using the firm’s FOCs based on the updated K (i+1).

4. Check convergence: Compare new and old capital levels:

Error =
∣∣K (i+1) − K (i)

∣∣
5. Stopping rule: If error < tolerance (e.g., 10−3), stop. Otherwise,

return to step 2.

Intuition: The algorithm iteratively adjusts K until households’ saving
decisions are consistent with firms’ capital demands (i.e., the goods and
factor markets clear).



22/28

Gauss–Seidel - sol GE GaussSeideil DP Lagr.m (1/4)

clear all; close all

tic

disp(’--------- New run ---------’);

% Parameter values

beta = 0.95^30; %0.9324^30; % 0.9324

sigma = 2;

A = 1;

alpha = .33;

delta = 1 - (1-.05)^30;

% Initials

Kold = .01;

Nold = 1;

w = (1-alpha) * A * Kold^alpha * Nold^(-alpha);

R = 1 + alpha * A * Kold^(alpha-1) * Nold^(1-alpha) - delta;

% for iteration

error = 100;

errorv = 100;

iter = 0;

itermax = 50;

tol = .001;

update = .5;



23/28

Household - sol GE GaussSeideil DP Lagr.m

Given w ,R, the household chooses c1, c2, s1, using one of the three
methods (user’s choice):

▶ Method 0 (Lagrangian): Solve FOCs analytically.

▶ Method 1 (DP with FOC): Closed-form savings rule from Euler
equation obtained through solving DP analytically.

▶ Method 2 (DP with Value Function): Discretise asset space,
search for s1 that maximises V1.



24/28

Gauss–Seidel - sol GE GaussSeideil DP Lagr.m (2/4)
while (iter<itermax)&&(error>tol)

% [1.] Solving the household problem (3 different methods)

I_DP = 2;

%

if I_DP==0 % Lagrangian using FOCs

lambda_sig=w/(1+(1/R)*(1/(R*beta))^(-1/sigma));

c_1 = lambda_sig; c_2 = lambda_sig*(1/(R*beta))^(-1/sigma);

s_1 = w - c_1;

elseif I_DP==1 % Dynamic programming using FOCs

s_1 = (R*beta)^(1/sigma)/(R+(R*beta)^(1/sigma))*w; % a_2 = s_1

c_1 = w - s_1; c_2 = R*s_1;

elseif I_DP==2 % Dynamic programming method using value function

% Asset space (a2 = s1), step size = w/100

s1v = [0:w/100:2*w]; % coarser grid

%s1v = [0:w/1000:2*w]; % finer grid

V2v = (R*s1v).^(1-sigma)/(1-sigma); % Value over the asset space

c1v = w - s1v; % possible choices for consumption 1

% find value function for V1

V1v = (c1v>0).*c1v.^(1-sigma)/(1-sigma) + (c1v<=0).*(-10^10) +

beta*V2v;

% find the max value of the value function and optimal saving

[val,pos] = max(V1v);

s_1 = s1v(pos); % optimal saving/asset

c_1 = w - s_1; c_2 = R*s_1;

end



25/28

Gauss–Seidel - sol GE GaussSeideil DP Lagr.m (3/4)

% [.2] Clearing the labor and capital markets

N = 1; % inelastic labor

Knew = s_1; % capital

% Use onvex updating rule for capital for stabiity

K = update*Kold + (1-update)*Knew;

% [.3] Using the firm’s FOCs to pin down factor prices

w = (1-alpha)*A*K^alpha*N^(-alpha);

q = alpha*A*K^(alpha-1)*N^(1-alpha);

% Interest rate

r = q - delta;

R = 1 + r;

% Output

Y = A*K^(alpha)*N^(1-alpha);

% [.4] the convergence condition and updates for next interation

error = 100*abs(K - Kold)/Kold; % error in percentage

errorv = [errorv error];

%

Kold = K;

iter = iter+1;

end



26/28

Gauss–Seidel - sol GE GaussSeideil DP Lagr.m (4/4)

disp(’---- Results---------------- ’);

disp([’Y =’ num2str(Y)]);

disp([’K =’ num2str(K)]);

disp([’N =’ num2str(N)]);

disp([’R =’ num2str(R^(1/30))]); % annualised

disp([’w =’ num2str(w)]);

disp([’error=’ num2str(error)]);

disp(’-------------------------- ’);

toc



27/28

G–S - Analytical vs. DP (Numerical) Household Sol. (1/2)

(i) Analytical (ii) DP, step size = w
100

(iii) DP, step size = w
1000

Y 0.40049 0.39807 0.40062

K 0.062477 0.061342 0.062540

N 1.00000 1.00000 1.00000

R 1.02860 1.02900 1.02860

w 0.26833 0.26671 0.26842

error 0.00086253 0.00076821 0.00079105

Runtime (s) 0.039171 0.042734 0.051140

▶ (i) Household problem solved analytically (I DP==0/1)

▶ (ii) and (iii) solved by value search on discretized asset grid (I DP==2)

▶ (i) is nice, but many problems have no closed-form solution → use (i)/(ii)

▶ All runs use the same Gauss–Seidel relaxation, tolerance, and production
parameters



28/28

G–S - Analytical vs. DP (Numerical) Household Sol. (2/2)
Level differences are small but systematic:

▶ DP with coarser grid (ii) produces slightly lower K and Y relative to
analytical (i).

▶ Finer grid (iii) brings DP back in line with analytical: K and Y
essentially match (differences at < 10−4).

Prices and wages move accordingly:

▶ With lower K in (ii), the wage w is a bit lower and R a touch higher
(marginal products respond to capital).

▶ In (iii), w and R revert to analytical values.

Runtime:

▶ Runtime rises modestly with grid refinement.

Note

Intuition: Coarser grids tend to lead low-asset households to under-save due to
fewer saving choices. This biases K and Y downward.

Trade-off: Finer grids improve accuracy but increase computational burden (slower).

Solution: A potential solution is using non-uniform grid .



1/8

Supplementary Material



2/8

Motivation: Why Non-Uniform Grids?

Uniform grids: ai = amin + i ×∆a (for i = 0, 1, . . . , n − 1) use equal
spacing. Simple but inefficient when:

▶ The value or policy function is highly curved near
constraints/endpoints (e.g. borrowing limit).

▶ Optimal savings of low-asset agents can be tiny so coarse uniform
grids may not offer this option, forcing them to consume everything
(to avoid c = 0).

Solution: use non-uniform grids that place more points where accuracy
matters (and fewer where it does not), improving accuracy without
increasing number of grid points (computational cost).

We consider two discretization methods:

1. Left-dense grid: dense near amin (borrowing constraint).

2. Chebyshev-Lobatto grid: dense near both amin and amax (Not
applicable here).

Back to Main Section



3/8

Left-Dense (Power-Transformed) Grid (1/2)

Formula:

grid(t) = amin + (amax − amin) t
p, t ∈ [0, 1], p > 1

Code:

function grid = left_dense_grid(amin, amax, n, p)

% Left-dense non-uniform grid on [amin, amax]:

% (You need to set p>1 so points cluster near amin)

t = linspace(0,1,n); % uniform in [0,1]

grid = amin + (amax-amin)*(t.^p); % convex warp clusters left

grid(1)=amin; grid(end)=amax; % exact endpoints

end

Intuition:

1. Start with a uniform grid t = [0, 1
n−1 , ..., 1].

2. Apply a nonlinear stretch t 7→ tp.

3. Since f (t) = tp is convex for p > 1, points dense near amin and
sparse near amax.



4/8

Left-Dense (Power-Transformed) Grid (2/2)

Numerical illustration:

t t1 (linear) t2 t3

0.00 0.00 0.00 0.00
0.25 0.25 0.06 0.02
0.50 0.50 0.25 0.13
0.75 0.75 0.56 0.42
1.00 1.00 1.00 1.00

Parameter choice and effects:

p Spacing pattern Typical use

1 uniform baseline (equal spacing)
> 1 dense near amin capture curvature near borrowing bound

0 < p < 1 dense near amax capture behaviour at high wealth



5/8

Chebyshev-Lobatto Grid (1/2)

Goal: Create dense grid near both ends [amin, amax].

Formula:

ξj = cos

(
π · j

n − 1

)
, j = 0, 1, . . . , n − 1

aj =
amin + amax

2
+

amax − amin

2
ξj .

Code:

function grid = cheb_lobatto_grid(amin, amax, n)

% ChebyshevâLobatto nodes on [amin, amax].

% (points bunch/dense near both ends)

j = 0:(n-1);

xi = cos(pi * j / (n-1)); % nodes on [-1,1]

centre = 0.5*(amin+amax);

g = centre + 0.5*(amax-amin)*xi;

grid = sort(g,’ascend’); % ascending order

grid(1)=amin; grid(end)=amax; % pin exact endpoints

end



6/8

Chebyshev-Lobatto Grid (2/2)

Let n = 5 and interval [0, 10].

Step 1: equally spaced angles

θj = j
π

4
, j = 0, . . . , 4.

Step 2: take cosines

ξ = [1, 0.707, 0, −0.707, −1].

Step 3: map to [0, 10]

a = 5 + 5ξ = [10, 8.535, 5, 1.465, 0].

Step 4: sort ascending ⇒ [0, 1.465, 5, 8.535, 10].

Observation: short gaps near 0 and 10, wide gaps in the middle.



7/8

Why cosine creates endpoint clustering?

Cosine basics:
x = cos(θ), θ ∈ [0, π]

gives x ∈ [−1, 1].

If we take equal angular steps in θ from θi = {0, 1
n−1π, · · · ,

j−1
n−1π, π}, the

corresponding x ’s are not equally spaced. In fact, x(θi ) will be dense
near both endpoints -1 and 1 and sparse around the centre.

Consider derivative:
dx

dθ
= − sin θ

▶ Near θ = 0 or π, sin θ ≈ 0 ⇒ x changes slowly, causing points to
crowd near ±1.

▶ In the middle (θ ≈ π/2), sin θ = 1, causing x to change quickly and
therefore points spaced wider.



8/8

Gauss–Seidel - sol GE GaussSeideil DP Lagr v1.m
while (iter<itermax)&&(error>tol)

...

...

elseif I_DP==2 % Dynamic programming method using value function

% DIFFERENT DISCRETIZATION METHODS

% --------------------------------

% [a.] Uniform

%s1v = make_grid(’uniform’, 0, 2*w, 201);

%s1v = make_grid(’uniform’, 0, 2*w, 2001);

% [b.] Growing grid (left dense)

s1v = make_grid(’left_dense’, 0, 2*w, 201);

%s1v = make_grid(’left_dense’, 0, 2*w, 2001);

% [c.] Chebyshev (dense near both endpoints)

% (Not suitable for this problem)

%s1v = make_grid(’cheb’, 0, 2*w, 201);

% ----------------------------------------

V2v = (R*s1v).^(1-sigma)/(1-sigma);

...

...

...

end


	Two-Period OLG with Competitive Firm (DGE OLG)
	Setup
	Household - Lagrangian Approach
	Household - Dynamic Programming Approach

	Solution Method 1: Fsolve
	Solution Method 2: Gauss–Seidel (G-S)
	Results Comparison

	Supplementary material
	Appendix
	Appendix


