Lifecycle Earnings Risk and Insurance: New Evidence from Australia

Darapheak Tin Chung Tran

Research School of Economics, Australian National University

Australian Labour Market Research Workshop

December 2022

<□ > < @ > < E > < E > E の Q @ 1/60

Our study

- 1. Better understand the nature of income shock process in Australia
 - \rightarrow Explore individual earnings risk by age and income history
 - \rightarrow Decompose sources of earnings changes: Wage or hour
- 2. Study the insurance role of family and government
 - \rightarrow Family: Market earnings and private transfers
 - \rightarrow Government: Progressive taxes and targeted public transfers

Data and methodology

Data: HILDA 2001-2020 (152,903 observations).

Sampling criteria: (i) Primary earner, (ii) Employment history.

Methodology: Non-parametric approach following Guvenen et al. (2021) and De Nardi et al. (2021).

Residual income shocks := changes or growth of residual income (i.e., income net of age and time effects)

Derive moments of shocks: Non-parametric approach

1. Purge age and time effects:

$$\log income_{i,t} = \beta_1 age_{i,t} + \beta_2 age_{i,t}^2 + \beta_3 year_t + \mu_{i,t}$$
(1)

2. Calculate the **residuals** $\hat{\mu}_{i,t}$ and the n^{th} -order differences of $\hat{\mu}_{i,t}$:

$$\Delta^n_{\hat{\mu}_{i,t}} = \hat{\mu}_{i,t} - \hat{\mu}_{i,t-n} \tag{2}$$

3. Group the **residual shocks** $\Delta_{\hat{\mu}_{i,t}}^n$ by (i) age and (ii) past income decile.

4. For each subgroup, calculate second- and higher-order moments (i.e., variance, skewness, kurtosis) of the residual shock distribution.

See formula in the appendix.

Empirical distribution of annual residual earnings shocks

< □ > < □ > < □ > < Ξ > < Ξ > Ξ - の < ⊙ 6/60

Empirical distribution of **3-year** average residual earnings shocks

Residual income shocks := changes or growth of residual income (i.e., income net of age and time effects)

Residual income shocks := changes or growth of residual income (i.e., income net of age and time effects)

Second-order income risk: Variance of a residual income shock distribution

<ロ > < 母 > < 臣 > < 臣 > 三 の Q @ 8/60

Residual income shocks := changes or growth of residual income (i.e., income net of age and time effects)

- Second-order income risk: Variance of a residual income shock distribution
- Third-order income risk: Skewness (S) measures the lack of symmetry in data distribution of shocks. A normal distribution has S=0

<ロ> < 母> < 臣> < 臣> < 臣> 三 のへで 8/60

- ► |S| between 0 and 0.5: fairly symmetrical
- ▶ |S| between 0.5 and 1: moderately skewed
- \triangleright |S| greater than 1: highly skewed

Residual income shocks := changes or growth of residual income (i.e., income net of age and time effects)

- Second-order income risk: Variance of a residual income shock distribution
- Third-order income risk: Skewness (S) measures the lack of symmetry in data distribution of shocks. A normal distribution has S=0
 - ► |S| between 0 and 0.5: fairly symmetrical
 - ▶ |S| between 0.5 and 1: moderately skewed
 - \triangleright |S| greater than 1: highly skewed
- Fourth-order income risk: Kurtosis (K) measures the thickness of the tails of a shock distribution.
 - K = 3 (Mesokurtic): Standard normal distribution
 - K > 3 (Leptokurtic): Distribution is longer, tails are fatter
 - K < 3 (Platykurtic): Distribution is shorter, tails are thinner

Decomposition: Dispersion of shocks

Figure: Variances of annual and 3-year average changes in usual weekly earnings, wages, and hours of primary earners

See derivation of decomposition formulae in the appendix $\Rightarrow 4 \equiv 3 = 9 \otimes 9_{/60}$

Decomposition: Skewness and Kurtosis of shocks

Figure: Pearson Skewness and Pearson Kurtosis of annual average changes in usual weekly earnings, wages, and hours of main job of primary earners (at least 18 years of employment)

See derivation of decomposition formulae in the appendix. At $\equiv 1000 - 10/60$

Wage and Hour changes vs. Earnings changes

Figure: Annual changes in residual weekly wages and hours versus decile of annual changes in residual usual weekly earnings for primary earners in the 1st, 5th, and 9th deciles of past usual weekly earnings

See corresponding 3-year average change statistics in the appendix. See one of the statistics of the second second

Summary 1: Earnings risks

1. Non-linear and non-Gaussian income dynamics

- Negatively skewed shock distributions (extreme negative shocks are larger in magnitude compared to positive ones);
- Leptokurtic shock distributions (small/moderate shocks are rare but extreme shocks are more likely than suggested by the normal distribution);
- These are persistent features.
- 2. The sources of risks are quite different
 - Wages drive the earnings shock dispersion (second-order risk);
 - Hours drive the negative skewness (third-order risk) and excess kurtosis (fourth-order risk).

Definition: Insurance against income risks

Insurance := the extent to which an income component reduces risks.

► Market income risks (via members' annual earnings)
Family market income risks

► Family market income risks (via private transfers) Family pre-gov't income risks

► Family pre-gov't income risks (via income taxes) Family post-tax income risks

Family post-tax income risks (via public transfers)
Family post-gov't income risks

Example: Insurance against 2nd-order earnings risk Primary earner's market income

For more detailed figures, see Fig 6 and Fig 9 in the Appendix > 3 000 14/60

Example: Insurance against 2nd-order earnings risk Primary earner's market income + Secondary earners' market income

For more detailed figures, see Fig 6 and Fig 9=in the Appendix: \bullet = $\circ \circ \circ \circ$ $_{15/60}$

Example: Insurance against 2nd-order earnings risk Primary earner's market income + Secondary earners' market income + Private transfers

For more detailed figures, see Fig 6 and Fig 9 in the Appendix \bullet Ξ $\mathcal{O} \land \mathcal{O}$ $_{16/}$

Example: Insurance against 2nd-order earnings risk Primary earner's market income + Secondary earners' market income + Private transfers - (Combined taxes - Concessions)

For more detailed figures, see Fig 6 and Fig 9 in the Appendix > 3 000 17/60

Example: Insurance against 2nd-order earnings risk Primary earner's market income + Secondary earners' market income + Private transfers - (Combined taxes - Concessions) + Public transfers

For more detailed figures, see Fig 6 and Fig 9-in the Appendix: \sim = $-9 \land \odot$ $_{18/}$

Family insurance against 3rd- and 4th-order risks

Figure: Standardized Skewness (top) and Kurtosis (bottom) of the distribution of annual changes of family income (P1-P99) at different levels.

Government insurance against 3rd- and 4th-order risks

Figure: Standardized Skewness (top) and Kurtosis (bottom) of the distribution of annual changes of post-tax and disposable (or post-government) family income (P1-P99) at different levels.

Insurance against transitory shocks: Male vs. Female

Figure: Moment properties of the distributions of annual income shocks of male (left panel) and female (right panel) primary earners (P1-P99 Pearson statistics).

^{(*} 21/60

Insurance against persistent shocks: Male vs. Female

Figure: Moment properties of the distributions of 3-year average income shocks of male (left panel) and female (right panel) primary earners (P1-P99 Pearson statistics)

22/60

Insurance against *transitory* shocks: Partnered vs. Lone parents

Figure: Moment properties of the distributions of annual income shocks of partnered (left panel) and lone (right panel) parents (P1-P99 pearson statistics) = = $\sim \sim \sim \sim$

Summary 2: Insurance against risks

1. Substantial family and government insurance against risks;

2. Family and government play different roles;

- Government insurance mitigates the dispersion of shocks;
- Family insurance mitigates the magnitude and likelihood of extreme and rare shocks;
- 3. Income risks are more persistent for certain demographic groups \rightarrow government insurance is crucial.

Cross-country comparison

	Australia	The Netherlands	US
Driver of earnings risk	_		
Dispersion	Wages	Wages & Hours*	Wages & Hours
Left Skewness	Hours	Hours	Hours
Excess Kurtosis	Hours	Hours	Hours
Main insurance	-		
Dispersion	Gov't	Gov't	Family & Gov't
Left Skewness	Family	Family & Gov't	Family
Excess Kurtosis	Family	Family & Gov't	Family

*Note: In the Netherlands, hour changes contribute more to earnings dispersion at the lower income deciles

Conclusion

Our findings on the dynamics of income suggest:

- 1. Similar earnings dynamics in Australia as in other OECD countries;
- Some differences with regards to the sources of risks and insurance (Why?);
- 3. Risk gap and risk equalizing effect of government insurance;
- 4. Crowding-out effect?
- 5. Understanding earnings risks and insurance against risks is crucial for designing tax and transfer policies.

Future work:

- 1. Topics: retirees and age pension, consumption risk;
- 2. Data: Administrative data;
- 3. Modelling: Mapping microdata to macroeconomic model.

Appendix: Inequality and the role of government in Australia

Gini coefficients for equivalised income

Data: ABS (Microdata: Household Expenditure, Income and Housing, 2015-16, Cat. no. 6540.0, released 25/10/17) and ABS HES Basic confidentialised unit record files for years 1988-89 through 2009-10 as available at 25/10/17. **Source:** *Rising Inequality? A stocktake of the evidence (Productivity Commission, 2018).*

See appendix for comparison between average annual income growth figures computed using (i) static distributions by PC, and (ii) our method. 27/60

Appendix: Average disposable income growth (PC)

Average equivalised disposable income by income decile, 1988-89 to 2015-16

Average annual percentage growth (%)

Average annual change (\$)

Data: ABS (Microdata: Household Expenditure, Income and Housing, 2015-16, Cat. no. 6540.0, released 25/10/17) and ABS HES Basic confidentialised unit record file for 1988-89 as available at 25/10/17.

Source: Rising inequality? A stocktake of the evidence (Productivity Commission, 2018).

Appendix: Average annual growth of residual income by decile using equation 10

Income Decile	Ν	Individual	Individual	Household	Household
		Labour Income	Market Income	Pre-gov't Income	Disposable Income
1	10,965	58.64%	56.27%	29.11%	16.23%
2	10,964	5.86%	5.97%	4.17%	0.22%
3	10,950	-0.88%	-0.24%	2.54%	-0.01%
4	10,940	-3.20%	-3.20%	-0.56%	-1.42%
5	10,982	-4.45%	-4.03%	-1.73%	1.00%
6	10,930	-4.86%	-4.82%	-2.49%	-1.85%
7	10,950	-4.51%	-4.79%	-2.31%	-1.90%
8	10,947	-4.17%	-4.84%	-3.95%	-1.89%
9	10,953	-5.39%	-6.17%	-3.60%	-2.82%
10	10,948	-7.80%	-10.00%	-7.16%	-5.83%

Table 3: Average Annual Residual Income Growth (2001-2020) of Employees. The growth statistics shown are for employees (not self-employed) age 25-64. The residual changes are obtained from controlling for time and age effects (see equation 1). The figures account for cross-decile mobility over time.

Appendix: Summary statistics of primary earners in 2001

Primary Ea	arner	Ν	Mean	Median	$^{\mathrm{SD}}$	Min	Max
Age	Individual	3,872	40.82	40	9.73	25	64
	Family	3,872	-	-	-	-	-
Weekly hours	Individual	3,872	40.09	40	13.09	0	120
	Family	3,872	53.01	47	32.39	0	201
Weekly wage	Individual	3,872	1,292.20	$1,\!144.11$	833.72	0.00	$14,\!189.97$
	Family	3,872	1,854.35	$1,\!629.21$	$1,\!195.40$	0.00	$14,\!189.97$
Labour Income	Individual	3,872	66,296.91	$59,\!623.97$	$47,\!176.12$	0.00	$915,\!285.31$
	Family	3,872	$96,\!419.84$	$84,\!933.90$	$65,\!805.50$	0.00	$915,\!285.31$
Market income	Individual	3,872	68,764.74	$61,\!171.57$	$48,\!541.73$	-53,391.64	$916,\!353.19$
	Family	3,872	$103,\!635.25$	$91,\!527.77$	73,219.05	-28,221.30	$1.51\mathrm{e}{+06}$
Private transfer	Individual	3,872	414.57	0.00	$2,\!450.85$	0.00	$36,\!611.41$
	Family	3,872	605.10	0.00	3,016.12	0.00	$44,\!543.89$
Total income tax	Individual	3,872	16,818.29	$12,\!684.33$	18,900.91	-3,252.31	391, 345.50
	Family	3,872	$23,\!958.07$	$17,\!950.27$	26,017.05	-8,808.10	$637,\!691.50$
Public transfer	Individual	3,872	2,366.43	0.00	5,257.32	0.00	47,440.77
	Family	3,872	5,276.89	0.00	8,855.15	0.00	69,825.59

Table 1: Summary statistics of primary earners in 2001. Note that, the values of income, tax liabilities and transfers are expressed in 2018 AUD.

Appendix: Summary statistics of primary earners in 2020

Primary Ea	arner	Ν	Mean	Median	$^{\mathrm{SD}}$	Min	Max
Age	Individual	5,064	41.62	40	11.42	25	64
	Family	5,064	-	-	-	-	-
Weekly hours	Individual	5,064	38.39	40	12.17	0	137
	Family	5,064	53.17	48	30.83	0	227
Weekly wage	Individual	5,064	1,602.68	1,407.68	994.18	0.00	13,106.03
	Family	5,064	2,366.64	2,135.80	$1,\!479.03$	0.00	15,752.48
Labour Income	Individual	5,064	85,855.68	75,723.73	56,891.76	0.00	970, 817.13
	Family	5,064	129,099.10	$114,\!556.42$	85, 839.93	0.00	$1.13\mathrm{e}{+06}$
Market income	Individual	5,064	88,836.96	$77,\!665.37$	$60,\!488.81$	-42,502.38	970, 817.13
	Family	5,064	$139,\!555.66$	$121,\!949.19$	$102,\!986.36$	-42,016.96	$2.74\mathrm{e}{+06}$
Private transfer	Individual	5,064	446.73	0.00	$3,\!197.68$	0.00	132,911.66
	Family	5,064	809.84	0.00	5,273.85	0.00	168,922.17
Total income tax	Individual	5,064	20,926.39	$15,\!641.81$	$23,\!154.97$	-2,259.09	413,873.91
	Family	5,064	31,058.35	$23,\!178.26$	37,202.65	-7,960.70	$1.16\mathrm{e}{+06}$
Public transfer	Individual	5,064	$2,\!133.53$	0.00	5,764.68	0.00	72,231.70
	Family	5,064	5,205.20	0.00	$10,\!679.92$	0.00	97, 191.41

Table 2: Summary statistics of primary earners in 2020. Note that, the values of income, tax liabilities and transfers are expressed in 2018 AUD.

Appendix: Related literature

Non-gaussian properties of earnings dynamics:

- Guvenen et al. (2021): US;
- ► Halvorsen et al. (2020): Norway;
- De Nardi et al. (2021): US and the Netherlands.

Studies in Australia:

- Gaussian shocks:
 - Chatterjee et al. (2016); Freestone (2018): Wage inequality and unobserved shocks;
 - Kaplan et al. (2018): Consumption and income inequality;
- Level and first moment of income:
 - Herault and Azpitarte (2015): Redistributive impact of tax and transfer;
 - Tran and Zakariyya (2021): Trends in tax progressivity and redistribution.

Appendix: Summary of analytical framework

Summary of analytical framework:

- Calculate moments of distributions of residual income changes (*risks*);
- Decompose the moment estimates to study sources of risks (See Appendix: Decompose earnings shocks);
- 3. Examine the degree of insurance by family and government.

Appendix: Derive moments of shocks via parametric approach (1)

Consider a parsimonious model for the residual income in equation 10:

$$\hat{\mu}_{i,t} = z_{i,t} + \epsilon_{i,t} \tag{3}$$

$$z_{i,t} = z_{i,t-1} + \eta_{i,t} \tag{4}$$

where $\eta_{i,t}$ and $\epsilon_{i,t}$ are drawn from some distributions $F_{\eta} \sim (0, \sigma_{\eta}^2)$ and $F_{\epsilon} \sim (0, \sigma_{\epsilon}^2)$, respectively.

The *n*-year growth of $\hat{\mu}_{i,t}$ is thus:

$$\Delta_{\hat{\mu}_{i,t}}^{n} = \hat{\mu}_{i,t} - \hat{\mu}_{i,t-n}$$

$$= \sum_{j=t-n+1}^{t} \eta_{i,j} + \epsilon_{i,t} - \epsilon_{i,t-n}$$
(5)
(6)

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 34/60

Appendix: Derive moments of shocks via parametric approach (2)

Given the parametric model 6, the higher-order moments of the distribution of $\Delta_{\hat{\mu}_{i,t}}^{n}$ are:

$$\sigma_{\Delta_{\hat{\mu}_{i,t}}^{n}}^{2} = n\sigma_{\eta}^{2} + 2\sigma_{\epsilon}^{2} \tag{7}$$

$$S^{n}_{\Delta\hat{\mu}_{i,t}} = \frac{n \times \sigma^{3}_{\eta}}{\left(n\sigma^{2}_{\eta} + 2\sigma^{2}_{\epsilon}\right)^{\frac{3}{2}}}S_{\eta}$$
(8)

$$K_{\Delta\hat{\mu}_{i,t}}^{n} = \frac{n \times \sigma_{\eta}^{4}}{(n\sigma_{\eta}^{2} + 2\sigma_{\epsilon}^{2})^{2}} K_{\eta} + \frac{2 \times \sigma_{\epsilon}^{4}}{(n\sigma_{\eta}^{2} + 2\sigma_{\epsilon}^{2})^{2}} K_{\epsilon}$$
(9)

Assuming $N_{\eta} \sim (0, \sigma_{\eta}^2)$ and $N_{\epsilon} \sim (0, \sigma_{\epsilon}^2)$, we can estimate σ_{η} and σ_{ϵ} (as in *Chatterjee et al. (2016)*) and work out the three moment statistics.

Back to Methodology

Derive moments of shocks: Non-parametric approach

1. Purge age and time effects:

$$\log income_{i,t} = \beta_1 age_{i,t} + \beta_2 age_{i,t}^2 + \beta_3 year_t + \mu_{i,t}$$
(10)

2. Calculate the **residuals** $\hat{\mu}_{i,t}$ and the n^{th} -order differences of $\hat{\mu}_{i,t}$:

$$\Delta^n_{\hat{\mu}_{i,t}} = \hat{\mu}_{i,t} - \hat{\mu}_{i,t-n} \tag{11}$$

3. Group the **residual shocks** $\Delta_{\hat{\mu}_i t}^n$ by (i) age and (ii) past income decile.

4. For each subgroup, calculate second- and higher-order moments of residual shock distributions:

$$\tilde{\mu}_{\Delta y}^{k} = \frac{E\left[(\Delta y - \mu_{\Delta y})^{k}\right]}{\sigma^{k}}$$
(12)

where $\tilde{\mu}_{\Delta y}^{k} :=$ the k^{th} standardized moment of y shocks (k^{th} -order risks). < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 36/60

Appendix: Additional consideration

We use quantile-based measures of skewness and kurtosis for comparability with the previous studies.

$$S_{kelley} = \frac{(P_{90} - P_{50}) - (P_{50} - P_{10})}{P_{90} - P_{10}}$$
(13)
$$\mathcal{K}_{crow-siddiqui} = \frac{P_{97.5} - P_{2.5}}{P_{75} - P_{25}}$$
(14)

We consider robust moment statistics: *P1-P99, P5-P95,* and *P10-P90*.

Alternatively, using Arc-Percent Change method yields similar results.

Appendix: Decompose earnings shocks (1)

We have:

$$y_{i,t} = w_{i,t} \times h_{i,t} \tag{15}$$

$$\implies \frac{\% \Delta y_{i,t}}{dt} = \frac{\% \Delta w_{i,t}}{dt} + \frac{\% \Delta h_{i,t}}{dt}$$
(16)

which can be simplified as

$$\Delta y = \Delta w + \Delta h \tag{17}$$

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ = うへで 38/60

Let
$$\tilde{\mu}_z^k := \mathbb{E}\left(\frac{z-\mu_z}{\sigma_z}\right)^k$$
 and $\sigma_z := \sqrt{var(z)}$ for a random variable z .

Appendix: Decompose earnings shocks (2)

Second moment:

$$\sigma_{\Delta y}^{2} = \sigma_{\Delta w}^{2} + \sigma_{\Delta h}^{2} - 2cov(\Delta w, \Delta h)$$
(18)

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ℃ 39/60

Third moment:

$$\begin{split} \tilde{\mu}_{\Delta y}^{3} &= \frac{1}{\sigma_{\Delta y}^{3}} \left[\sigma_{\Delta w}^{3} \tilde{\mu}_{\Delta w}^{3} + \sigma_{\Delta h}^{3} \tilde{\mu}_{\Delta h}^{3} \right] \\ &+ \frac{3}{\sigma_{\Delta y}^{3}} \left[\mathbb{E} (\Delta h - \mu_{\Delta h})^{2} (\Delta w - \mu_{\Delta w}) + \mathbb{E} (\Delta w - \mu_{\Delta w})^{2} (\Delta h - \mu_{\Delta h}) \right] \end{split}$$
(17)

Fourth moment:

$$\tilde{\mu}_{\Delta y}^{4} = \frac{1}{\sigma_{\Delta y}^{4}} \left[\sigma_{\Delta w}^{4} \tilde{\mu}_{\Delta w}^{4} + \sigma_{\Delta h}^{4} \tilde{\mu}_{\Delta h}^{4} \right] + \frac{4}{\sigma_{\Delta y}^{4}} \mathbb{E} \left[(\Delta h - \mu_{\Delta h})^{3} (\Delta w - \mu_{\Delta w}) + (\Delta w - \mu_{\Delta w})^{3} (\Delta h - \mu_{\Delta h}) \right] + \frac{6}{\sigma_{\Delta y}^{4}} \mathbb{E} \left[(\Delta w - \mu_{\Delta w})^{2} (\Delta h - \mu_{\Delta h})^{2} \right]$$
(18)

Back to Main Section

Appendix: Volatility of shocks by income and age

Figure: Standard deviation of the distribution of changes in regular market earnings for primary earner (P1-P99)

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 – のへで

40/60

Appendix: Decomposition (skewness and kurtosis)

Annual changes Annual changes

Pearson Skewness

Figure: Pearson Skewness and Pearson Kurtosis of annual average and 3-year average changes in usual weekly earnings, wages, and hours of main job of primary earners (at least 18 years of employment)

Wages (main job) Hours (main job) Earnings (main job) COV(Δw, Δh)

Appendix: Wage and Hour changes vs. Earnings changes

Figure: Changes in residual weekly wages and hours versus decile of changes in residual usual weekly earnings for primary earners in the 1st, 5th, and 9th deciles of past usual weekly earnings

Appendix: Family insurance against 2nd-order risk

Figure: Standard deviation of the distribution of annual changes of family income (P1-P99) at different levels.

Appendix: Government insurance against 2nd-order risk

Figure: Standard deviation of the distribution of annual changes of post-tax and disposable (or post-government) family income (P1-P99) at different levels.

See a more detailed figure in the appendix. $\langle \Box \rangle + \langle \overline{\Box} \rangle + \langle \overline{\Xi} \rangle - \langle \overline{\Xi} \rangle - \langle \overline{\Box} \rangle - \langle$

Appendix: Family insurance against 2nd-order risk

Figure: Standard deviation of the distribution of annual and 3-year average changes of family income (P1-P99) at different levels. The figure captures the relative contribution of family market income and private transfer to the second-order risk of pre-government family income.

Appendix: Family insurance against 3rd- and 4th-order risks (1)

Pearson Skewness

Age 25-34 Age 35-44 Age 45-54 Age 55-64 1.5 nily market income Pearson Ske -.5 -1 -1 -1.5 -1 -1.5 -2 -2 -2.5 -2.5 -2.5 -2.5 10 Decile of Prev. Earnings Decile of Prev Earnings Decile of Prev Earnings Decile of Prev Earnings Pearson Kurtosis Age 25-34 Age 35-44 Age 45-54 Age 55-64 Kurtosis ŝ Pearson 10 10 Decile of Prev Earnings Decile of Prev Earnings Decile of Prev. Earnings Decile of Prev Earnings

Figure: Skewness (top) and Kurtosis (bottom) of the distribution of annual changes of family income (P1-P99) at different levels. The figure captures the relative contribution of family market income and private transfer to the third- and fourth-order risks of pre-government family income.

Appendix: Family insurance against 3rd- and 4th-order risks (2)

Pearson Skewness

Figure: Skewness (top) and Kurtosis (bottom) of the distribution of 3-year average changes of family income (P1-P99) at different levels. The figure captures the relative contribution of family market income and private transfer to the third- and fourth-order risks of pre-government family income.

Appendix: Gov't insurance against 2nd-order risks

Figure: Standard deviation of the distribution of annual and 3-year average changes of post-tax and disposable (or post-government) family income (P1-P99) at different levels. The figure captures the relative contribution of tax and transfer to the second-order risk of disposable family income.

Appendix: Gov't insurance against 3rd- and 4th-order risks

Figure: Skewness (top) and Kurtosis (bottom) of the distribution of annual changes of post-tax and disposable (or post-government) family income (P1-P99) at different levels. The figure captures the relative contribution of tax and transfer to the third- and fourth-order risks of disposable family income.

Appendix: Spousal response vs Public transfer

Figure: Annual changes in spousal earnings and public transfers versus decile of annual changes in past market earnings of primary earners in the 1st, 5th, and 9th deciles of past regular market income.

See a more detailed figure in the appendix. < P + (P + (P + (P + (P + (P + (P + (P + (P +

Appendix: Male vs. Female secondary earners

Seco	ndary Earner	Age	Higher Education	Hours	Wage	Market Income	Govt Transfer
				(Weekly)	(Weekly)	(Annual)	(Annual)
1	Male	36	47%	29.9	\$619.43	\$19,554.41	\$10,633.30
	Female	34.4	47%	25.3	\$566.46	\$21,166.45	\$11,822.05
2	Male	38.3	57%	35	\$823.47	\$40,572.98	\$5,065.07
	Female	36.3	54%	26.6	\$664.96	\$29,604.74	\$6,705.75
3	Male	40.7	65%	38	\$959.69	\$49,668.30	\$3,046.49
	Female	38.6	58%	29.6	775.35	\$38,089.68	\$3,708.15
4	Male	42.3	73%	40	\$1,201.26	\$65,238.51	\$1,729.30
	Female	40	67%	31.9	\$958.34	\$50,298.72	\$1,670.62
5	Male	46.1	82%	41.5	\$1,670.71	\$104,266.79	\$885.92
	Female	42.9	76%	33.9	\$1,281.75	\$74,134.83	\$1,114.50

Table 4: Average 20-year statistics for male and female secondary earners by family market income quintile. All income and transfer values are stated in 2018 Australian dollar.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Appendix: Insurance against *transitory* shocks and parenthood

Figure: Moment properties of the distributions of annual income shocks of parent (left panel) and non-parent (right panel) primary earners (P1-P99 pearson statistics) \sim

Appendix: Insurance against *persistent* shocks and parenthood

Figure: Moment properties of the distributions of 3-year average income shocks of parent (left panel) and non-parent (right panel) primary earners (P1-P99 pearson and some states and some states are states and some states are states are states and some states are states are

Appendix: Age-profiles of work hours and LFP rate

Figure: M-shaped age-profiles of work hours (left panel) and LFP rate (right panel). Solid line for men, dashed line for women.

Appendix: Spousal response vs Public transfer

Figure: Changes in usual weekly wages and hours of spouse versus decile of changes in usual weekly earnings (main job) of primary earners in the 1st, 5th, and 9th deciles of past weekly earnings. The top and bottom panels report annual and 3-year average changes, respectively.

Appendix: Spousal response vs Public transfer

Figure: Changes in spousal earnings and public transfers versus decile of changes in past market earnings of primary earners in the 1st, 5th, and 9th deciles of past regular market income. The top and bottom panels report annual and 3-year average changes, respectively.

	Age 25-34		Age 35-44		Age -	Age 45-54		Age 55-64	
Past decile	Part-time	Full-time	Part-time	Full-time	Part-time	Full-time	Part-time	Full-time	Total
1	188	231	418	247	389	276	320	143	2,212
	53.56%	6.90%	48.21%	3.64%	44.20%	3.81%	45.58%	4.40%	9.44%
	8.50%	10.44%	18.90%	11.17%	17.59%	12.48%	14.47%	6.46%	100.00%
2	51	419	177	593	137	604	96	268	2,345
	14.53%	12.51%	20.42%	8.73%	15.57%	8.34%	13.68%	8.24%	10.01%
	2.17%	17.87%	7.55%	25.29%	5.84%	25.76%	4.09%	11.43%	100.00%
3	35	450	54	630	78	684	77	340	2,348
	9.97%	13.43%	6.23%	9.28%	8.86%	9.44%	10.97%	10.45%	10.02%
	1.49%	19.17%	2.30%	26.83%	3.32%	29.13%	3.28%	14.48%	100.00%
4	27	407	58	681	80	708	55	332	2,348
	7.69%	12.15%	6.69%	10.03%	9.09%	9.77%	7.83%	10.21%	10.02%
	1.15%	17.33%	2.47%	29.00%	3.41%	30.15%	2.34%	14.14%	100.00%
5	15	445	41	753	66	708	46	298	2,372
	4.27%	13.28%	4.73%	11.09%	7.50%	9.77%	6.55%	9.16%	10.12%
	0.63%	18.76%	1.73%	31.75%	2.78%	29.85%	1.94%	12.56%	100.00%
6	14	324	36	847	38	783	42	268	2,352
	3.99%	9.67%	4.15%	12.47%	4.32%	10.81%	5.98%	8.24%	10.03%
	0.60%	13.78%	1.53%	36.01%	1.62%	33.29%	1.79%	11.39%	100.00%
7	13	311	35	771	39	842	19	343	2,373
	3.70%	9.28%	4.04%	11.35%	4.43%	11.62%	2.71%	10.54%	10.12%
	0.55%	13.11%	1.47%	32.49%	1.64%	35.48%	0.80%	14.45%	100.00%
8	5	292	26	724	22	886	15	389	2,359
	1.42%	8.72%	3.00%	10.66%	2.50%	12.23%	2.14%	11.96%	10.06%
	0.21%	12.38%	1.10%	30.69%	0.93%	37.56%	0.64%	16.49%	100.00%
9	3	252	11	749	28	897	18	408	2,366
	0.85%	7.52%	1.27%	11.03%	3.18%	12.38%	2.56%	12.54%	10.09%
	0.13%	10.65%	0.46%	31.66%	1.18%	37.91%	0.76%	17.24%	100.00%
10	0	219	11	795	3	857	14	464	2,363
	0.00%	6.54%	1.27%	11.71%	0.34%	11.83%	1.99%	14.26%	10.08%
	0.00%	9.27%	0.47%	33.64%	0.13%	36.27%	0.59%	19.64%	100.00%
Total	351	3,350	867	6,790	880	7,245	702	3,253	23,438
	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
	1.50%	14.29%	3.70%	28.97%	3.75%	30.91%	3.00%	13.88%	100.00%

Table 5: Proportion of primary earners in part-time employment by decile of usual weekly wages from main job. The subsample contains primary earners who report positive usual weekly labour earnings for at least 18 years of a subsample contains and the subsample contains and the subsample contains a sub

	Ag	Age 25-34		Age 35-44 A		ge 45-54 Ag		ze 55-64	
Past decile	Casual	Permanent	Casual	Permanent	Casual	Permanent	Casual	Permanent	Total
1	113	306	130	535	135	532	116	347	2,214
	31.92%	9.15%	30.23%	7.40%	33.33%	6.89%	37.54%	9.52%	9.45%
	5.10%	13.82%	5.87%	24.16%	6.10%	24.03%	5.24%	15.67%	100.00%
2	51	419	58	713	64	677	51	313	2,346
	14.41%	12.52%	13.49%	9.86%	15.80%	8.77%	16.50%	8.58%	10.01%
	2.17%	17.86%	2.47%	30.39%	2.73%	28.86%	2.17%	13.34%	100.00%
3	52	433	51	633	47	715	36	381	2,348
	14.69%	12.94%	11.86%	8.76%	11.60%	9.26%	11.65%	10.45%	10.02%
	2.21%	18.44%	2.17%	26.96%	2.00%	30.45%	1.53%	16.23%	100.00%
4	26	408	35	705	38	750	20	367	2,349
	7.34%	12.19%	8.14%	9.75%	9.38%	9.71%	6.47%	10.07%	10.02%
	1.11%	17.37%	1.49%	30.01%	1.62%	31.93%	0.85%	15.62%	100.00%
5	23	437	23	770	24	750	14	330	2,371
	6.50%	13.06%	5.35%	10.65%	5.93%	9.71%	4.53%	9.05%	10.12%
	0.97%	18.43%	0.97%	32.48%	1.01%	31.63%	0.59%	13.92%	100.00%
6	15	323	26	857	16	805	14	296	2,352
	4.24%	9.65%	6.05%	11.86%	3.95%	10.42%	4.53%	8.12%	10.03%
	0.64%	13.73%	1.11%	36.44%	0.68%	34.23%	0.60%	12.59%	100.00%
7	15	309	16	790	16	865	17	345	2,373
	4.24%	9.23%	3.72%	10.93%	3.95%	11.20%	5.50%	9.46%	10.12%
	0.63%	13.02%	0.67%	33.29%	0.67%	36.45%	0.72%	14.54%	100.00%
8	15	282	21	729	15	893	7	397	2,359
	4.24%	8.43%	4.88%	10.09%	3.70%	11.56%	2.27%	10.89%	10.06%
	0.64%	11.95%	0.89%	30.90%	0.64%	37.86%	0.30%	16.83%	100.00%
9	26	228	19	741	20	905	9	417	2,365
	7.34%	6.81%	4.42%	10.25%	4.94%	11.72%	2.91%	11.44%	10.09%
	1.10%	9.64%	0.80%	31.33%	0.85%	38.27%	0.38%	17.63%	100.00%
10	18	201	51	755	30	830	25	453	2,363
	5.08%	6.01%	11.86%	10.45%	7.41%	10.75%	8.09%	12.42%	10.08%
	0.76%	8.51%	2.16%	31.95%	1.27%	35.12%	1.06%	19.17%	100.00%
Total	354	3,346	430	7,228	405	7,722	309	3,646	23,440
	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
	1.51%	14.27%	1.83%	30.84%	1.73%	32.94%	1.32%	15.55%	100.00%

Table 6: Proportion of primary earners in casual employment by decile of usual weekly wages from main job. The subsample contains primary earners who report positive usual weekly labour earnings for at least 18 years of observation.

		Mai	Married		Single		
Income Quintile	Parenthood	Male	Female	Male	Female	Total	
	Non-parent	143	455	238	177	1,013	
		4.34%	12.14%	21.38%	19.39%	11.17%	
		14.12%	44.92%	23.49%	17.47%	100.00%	
Q1	Parent	167	809	12	117	1,105	
		5.07%	21.58%	1.08%	12.81%	12.18%	
		15.11%	73.21%	1.09%	10.59%	100.00%	
	Non-parent	200	407	319	217	1,143	
		6.07%	10.86%	28.66%	23.77%	12.60%	
		17.50%	35.61%	27.91%	18.99%	100.00%	
Q_2	Parent	234	597	1	32	864	
•		7.10%	15.93%	0.09%	3.50%	9.53%	
		27.08%	69.10%	0.12%	3.70%	100.00%	
	Non-parent	327	379	261	179	1,146	
		9.92%	10.11%	23.45%	19.61%	12.64%	
		28.53%	33.07%	22.77%	15.62%	100.00%	
Q3	Parent	399	386	2	19	806	
		12.11%	10.30%	0.18%	2.08%	8.89%	
		49.50%	47.89%	0.25%	2.36%	100.00%	
	Non-parent	361	255	165	120	901	
		10.95%	6.80%	14.82%	13.14%	9.93%	
		40.07%	28.30%	18.31%	13.32%	100.00%	
Q4	Parent	548	219	2	1	770	
-		16.63%	5.84%	0.18%	0.11%	8.49%	
		71.17%	28.44%	0.26%	0.13%	100.00%	
	Non-parent	349	129	111	51	640	
		10.59%	3.44%	9.97%	5.59%	7.06%	
		54.53%	20.16%	17.34%	7.97%	100.00%	
Q5	Parent	568	112	2	0	682	
· · · · ·		17.23%	2.99%	0.18%	0.00%	7.52%	
		83.28%	16.42%	0.29%	0.00%	100.00%	
	Total	3,296	3,748	1,113	913	9,070	
	%	100.00%	100.00%	100.00%	100.00%	100.00%	
	%	36.34%	41.32%	12.27%	10.07%	100.00%	

Table 7: Cross-tabulation of frequencies between parenthood, marital status, and gender. Since HILDA tracks individuals and their households over time, we present a snapshot of the first cohort entering the survey in 2001. The table suggests a negative assortative matching (or matching of unlike) between higher income males and lower.

		Married		Single	
Highest education attained	Male	Female	Male	\mathbf{Female}	Total
High school or lower	1,226	2,227	639	494	4,586
	37.20%	59.45%	57.41%	54.11%	50.57%
	26.73%	48.56%	13.93%	10.77%	100.00%
Above high school,	1,741	1,221	424	350	3,736
at most bachelor's degree	52.82%	32.59%	38.10%	38.34%	41.20%
	46.60%	32.68%	11.35%	9.37%	100.00%
Above bachelor's degree,	329	298	50	69	746
at most post-graduate degree	9.98%	7.96%	4.49%	7.56%	8.23%
	44.10%	39.95%	6.70%	9.25%	100.00%
Total	3,296	3,746	1,113	913	9,068
%	100.00%	100.00%	100.00%	100.00%	100.00%
%	36.35%	41.31%	12.27%	10.07%	100.00%

Table 8: Cross-tabulation of frequency between education, marital status, and gender. Since HILDA tracks individuals and their households over time, we present a snapshot of the first cohort entering the survey in 2001. The table suggests a negative assortative matching (or matching of unlike) between higher education males and lower education females. The observed pattern becomes less pronounced in later years of the survey, partly due to attrition and the inclusion of new and younger households

Bibliography I

- Chatterjee, A., Singh, A., and Stone, T. (2016). Understanding wage inequality in australia. *Economic Record*, 92:348–60.
- De Nardi, M., Fella, G., Knoef, M., Paz-Pardo, G., and Ooijen, R. V. (2021). Family and government insurance: Wage, earnings, and income risks in the netherlands and the us. *Journal of Public Economics*, 193:104327.
- Freestone, O. (2018). The drivers of life-cycle wage inequality in australia. *Economic Record*, 97 (307):424–444.
- Guvenen, F., Karahan, F., Ozkan, S., and Song, J. (2021). What do data on millions of us workers reveal about life-cycle earning risk? *Econometrica*, 89(5)(20913):2303–2339.
- Halvorsen, E., Holter, H., Ozkan, S., and Storesletten, K. (2020). Dissecting idiosyncratic earnings risk. *Working Paper*, (15395).
- Herault, N. and Azpitarte, F. (2015). Recent trends in income redistribution in australia: Can changes in the tax-benefit system account for the decline in redistribution? *Economic Record*, 91(292):38–53.

Bibliography II

Kaplan, G., Cava, G. L., and Stone, T. (2018). Household economic inequality in australia. *Economic Record*, 94:117–134.

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の < で 60/60

Tran, C. and Zakariyya, N. (2021). Tax progressivity in australia: Facts, measurements and estimates. *Economic Record*, 97 (316):45–77.