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Abstract

Machine learning and artificial intelligence algorithms can
assist human decision making and analysis tasks. While such
technology shows promise, willingness to use and rely on in-
telligent systems may depend on whether people can trust
and understand them. To address this issue, researchers have
explored the use of explainable interfaces that attempt to
help explain why or how a system produced the output for
a given input. However, the effects of meaningful and mean-
ingless explanations (determined by their alignment with hu-
man logic) are not properly understood, especially with users
who are non-experts in data science. Additionally, we wanted
to explore how explanation inclusion and level of meaning-
fulness would affect the user’s perception of accuracy. We
designed a controlled experiment using an image classifi-
cation scenario with local explanations to evaluate and bet-
ter understand these issues. Our results show that whether
explanations are human-meaningful can significantly affect
perception of a system’s accuracy independent of the actual
accuracy observed from system usage. Participants signifi-
cantly underestimated the system’s accuracy when it provided
weak, less human-meaningful explanations. Therefore, for in-
telligent systems with explainable interfaces, this research
demonstrates that users are less likely to accurately judge the
accuracy of algorithms that do not operate based on human-
understandable rationale.

Introduction

Intelligent systems have drawn the attention of many re-
searchers and scientists and are widely used in different do-
mains and applications, such as classification, recommen-
dation, and decision-support systems. While intelligent sys-
tems are used for various purposes, they share and follow
the same motivation: they are designed to help users achieve
their goals more conveniently by optimizing and automatiz-
ing parts of the process and reducing mental and physical
efforts for users.

By taking advantage of machine learning and artificial
intelligence, intelligent systems provide users with model-
generated outputs of different types, but the rationale be-
hind how and why these outputs are generated is not al-
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ways clear to the users of such systems. This is a ma-
jor concern for intelligent systems, as users might need to
know how reliable the outputs are (Siau and Wang 2018;
Goodall et al. 2018) and when they should—or should not
trust their judgment. Lack of trust in an intelligent system
could be problematic even if it produces accurate results, as
it might lead to users’ reluctance to rely on the system, lead-
ing to reduced overall efficiency and human-machine perfor-
mance. Furthermore, once trust in an automated system is
lost, it may be hard to reestablish (Hoffman et al. 2013). In
other cases, users may tend to over-rely on a system’s results
and outputs—regardless of their correctness or relevance—
as they believe a computing system is more knowledgeable
and “intelligent” than they are (Ribeiro, Singh, and Guestrin
2016)—a phenomenon known as automation bias (Goddard,
Roudsari, and Wyatt 2011). This could be especially dan-
gerous for systems that help users with critical tasks and de-
cisions. There is no intelligent system that performs with
100% accuracy for meaningful real-world tasks for which
people truly need machine assistance. Hence, there are cases
where an intelligent system might produce false positive or
false negative results. Knowing these situations, we realize
how risky over-relying on an intelligent system could be
(Parasuraman and Riley 1997).

In order to address these issues, researchers and design-
ers look to explainable systems to support machine trans-
parency and human understanding of system functionality
(Dosilovi¢, Brci¢, and Hlupi¢ 2018). Offered in various for-
mats (e.g., textual, visual, or numerical), explanations can
help clarify the rationale behind an intelligent system’s out-
puts and judgments to help users better understand how it is
working.

While users could potentially benefit greatly by having
explanations for intelligent systems, little empirical evi-
dence exists to inform exactly how explanations affect users’
behaviors, perception of the system accuracy, and trust in the
machine outputs. It is also important to understand the im-
plications of explanation design choices. For instance, sys-
tem designers must make important decisions on the type of
explanation, the level of detail, and use cases for when to
present explanations as part of the system workflow. A poor
judgment from a system designer in selecting proper expla-



nations could backfire on the user’s understanding, decision-
making, and reliance on an intelligent system.

Since explanations are introduced to make intelligent sys-
tems more understandable, one important consideration is
the extent to which explanations are meaningful, especially
when users are not knowledgeable in machine learning or
artificial intelligence. Many algorithms function according
to rules and layers that do not align with human logic, such
as in cases where influential features are learned from co-
incidences in a training set during supervised approaches
(e.g., (Ribeiro, Singh, and Guestrin 2016)). There is a lack
of empirical knowledge about how perceived meaningful-
ness of explanations influences the perception of an intel-
ligent system’s performance. User trust and understanding
of intelligent systems are complex issues and could be po-
tentially affected by multiple factors. Our research focuses
on user perception of model accuracy in intelligent systems.
Generally, we would expect higher perception of system ac-
curacy to result in higher user trust (Yin, Vaughan, and Wal-
lach 2019), but trust may also be influenced (positively or
negatively) by user perception of the appropriateness of the
system’s rationale for decisions. Our main goal for this re-
search is to understand the relationship between observed
accuracy and the meaningfulness of explanations in influ-
encing user perception of accuracy.

We present an experiment with controlled levels of simu-
lated system accuracy and explanation meaningfulness using
a binary image classification scenario. Through this work,
we contribute novel empirical results demonstrating the im-
portance and influence of meaningfulness of explanations in
transparent and explainable intelligent systems for user per-
ception of system accuracy.

Related Work

Though intelligent systems have proven to be useful in
many scenarios and contexts, shortcomings have encour-
aged researchers to think outside the box to come up with
solutions to address issues with system failures and user
trust. Model failures and false positives in certain applica-
tions and domains (e.g., medical diagnostic systems) could
be disastrous (Akata et al. 2018). To avoid misunderstand-
ings and mistrust, many researchers have been interested
in approaches that help make machine functionality more
transparent for users. In discussion of such concepts, re-
searchers use different related terminology, with examples
including interpretable systems, e.g., (Abdul et al. 2018),
explainable systems, e.g., (Core et al. 2006), and trans-
parent systems, e.g., (Amershi et al. 2014). For simplic-
ity, we refer to this area as explainable artificial intelli-
gence (XAI) (Doran, Schulz, and Besold 2018), and sub-
stantial research efforts have been explored in this area, e.g.,
(Van Lent, Fisher, and Mancuso 2004; Core et al. 20006;
Ribeiro, Singh, and Guestrin 2016).

Despite being an inspiring and growing research area, re-
searchers are dealing with major challenges while attempt-
ing to advance XAl for today’s algorithms. One challenge,
for instance, is that deep-learning methods are black-boxes
by nature; in other words, they are not human-interpretable
(Akata et al. 2018). Another challenge is visualizing the
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explanations in a comprehensive way for better user un-
derstanding, e.g., Alsallakh et al. (2014) and Samek et
al. (2017).

Despite many promising directions for explainable intel-
ligent systems, in their paper, Miller, Howe, and Sonen-
berg (2017) argue that many researchers and designers are
falling into the unforeseen pitfall of designing explanations
for themselves (i.e., Al researchers) rather than the end users
who are often less knowledgeable of data science. Under-
standing human factors and basic human reactions to intel-
ligent systems is crucial for the design of explainable sys-
tems. As a result, numerous research efforts have focused
on various aspects of human-centered designs for XAl sys-
tems, e.g., Dodge et al.(2018) and Zhu et al. (2017). Such
examples help demonstrate the breadth of interests and ap-
proaches in human-centered research in XAl systems, but
further progress and empirical testing is needed to better un-
derstand the implications of explanations on human under-
standing and behavior.

As explanations are helpful for users in understanding and
accepting system output (Cramer et al. 2008) and building a
mental model of how it works (Kulesza et al. 2013), it is also
important to study the effectiveness of explanations. Adadi
and Berrada (2018) argue that in spite of an increasing body
of work to implement and produce XAI systems and tech-
niques, there have been few projects focused on evaluating
these methods, with only 5% of all the papers in this com-
munity focused on user evaluation. Given this limited focus,
a need for human evaluation of XAI systems is essential.
Human-subjects studies allow researchers to not only evalu-
ate the quality of the system and a particular explanation but
also to study more nuanced properties of explanation design.

The current body of work in human-centered evalua-
tion of XAI systems covers various factors. For example,
Mohseni and Ragan (2018) presented a benchmark from
user annotations of image and text samples that demon-
strates how the human-centered evaluations of a system
might be used to qualify the local machine learning explana-
tions. In another study, Kizilcec (2016) tested trust in a sys-
tem with three levels of explanation details. The results show
that both explanations with few details and too much detail
can cause users to lose trust in the system. Hence, balancing
the level of detail is important while designing an XAI sys-
tem. A final example is the work demonstrated by Roy et al.
(2019), where a preliminary evaluation of their proposed ex-
plainable deep-learning approach studied how helpful users
find different types of explanation representations in their vi-
sual interface. Their results show that users preferred more
simplistic visual annotations over more detailed probabilis-
tic explanations about the model components.

In addition, several studies have focused primarily on user
trust in automated systems. For instance, Holliday, Wilson,
and Stumpf (2016) studied how user trust evolves over time
in an intelligent system with and without explanations. Their
results showed participants in the with-explanation condi-
tion tended to trust the system more in the beginning with
a more accurate mental model of the system, while the par-
ticipants in the no-explanation condition lost trust over time
and had difficulty building a mental model of the system.



According to them, trust in an intelligent system is a mul-
tidimensional and highly complex phenomenon that can be
hard to assess by directly questioning users about a single
factor. This raises a concern of finding potential approaches
to assess trust.

Researchers suggest trust can be quantified using other
measures and indirect metrics. In other words, instead of
measuring trust, we can measure concepts that are believed
to affect it. One such approach is to assess user understand-
ing of system accuracy. In recent relevant work, Yin, Vaugh,
and Walach (2019) conducted three user studies with con-
trolled accuracy to learn how model accuracy can affect
user trust. Their findings show that trust was significantly
affected by the observed accuracy compared to the reported
accuracy. This finding backs up our hypothesis that user per-
ception of model accuracy can affect understanding of and
trust in an intelligent system. While our research similarly
studies how observed machine performance can influence
perception of accuracy, it focuses on the influence of expla-
nations and explanation meaningfulness in conjunction with
observed accuracy.

In other relevant work, Lim, Dey, and Avrahami (2009)
studied the effects of two types of why and why not explana-
tions on user trust, performance, and understandability of the
underlying model. Their results show that explanation type
influences user understanding and trust in the system. They
also found inclusion of explanations lead to better under-
standing of the XAI system and the underlying model. Our
research also compares the presence and absence of expla-
nations, but we quantitatively evaluate perception of system
accuracy, and we compare different types of explanations
based on how meaningful they are for human subjects.

Experiment

We conducted a controlled experiment to study how the
meaningfulness of explanation affects human perception of
model accuracy. The experiment is based on an image clas-
sification task where participants review and judge the accu-
racy of machine classification.

Research Goals and Hypotheses

The primary goal of this research was to evaluate how
human-perceived meaningful and non-meaningful explana-
tions influence user perception of model accuracy. We stud-
ied how people perceive the accuracy of an explainable in-
telligent system after a period of system use.

To do this, we controlled two levels of human-
meaningfulness for explanations in an image classification
scenario. We designed strong meaningful explanations to fo-
cus on the key features of primary subjects in the images and
the weak meaningful explanations to highlight background
and nondescript features of the image. As we would expect
users to trust an intelligent system with a higher observed
accuracy, the hypotheses and results for the perceived ac-
curacy are expected to have implications for user trust. We
hypothesized that providing different levels of explanation
meaningfulness for a classification output would directly af-
fect the perception of accuracy—even when the observed
system accuracy is held constant.
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We predicted that people provided with human-
meaningful explanations would tend to predict a higher ac-
curacy for the system, and hypothesized an underestimation
of system accuracy would occur when users see explana-
tions that do not make sense in terms of meaningful human
logic or classification. It is important to clarify that our re-
search addresses the effects of explanation differences while
maintaining consistency in actual observed system accuracy.

Experimental Design

To test our hypotheses, we designed an experiment with par-
ticipants reviewing images along with the output from a sim-
ulated classification system. For the purpose of evaluating
human perception of machine accuracy, we sought a task
easy enough for non-expert users to quickly assess the cor-
rectness of the classifications. Furthermore, we favoured a
straightforward task that did not require any particular do-
main expertise to complete. To this end, the experiment used
an image classification distinction task between images of
cats and dogs.

Moreover, we sought an understandable explanation for-
mat that did not require a computational background in ma-
chine learning and artificial intelligence, so it would be suit-
able for non-experts. For this reason, we opted for visual
explanations where highlighted regions were used to mark
key areas used by the model to determine classification. This
method is commonly used in explainable classification sys-
tems, e.g., Riberio, Singh, Guestrin (2016), Samek, Wie-
gand, and Miiler (2017), and Samek et al. (2017). Most of-
ten, heatmaps are used to indicate the relative impact of dif-
ferent image regions, though approximated bounding boxes
can also be used for simplicity, e.g., Alsallakh et al. (2018)
and Zhang and Zhu (2018). For our study, it was important
that participants could easily and quickly interpret the expla-
nations; thus, our implementation used bounding regions to
reduce explanation complexity and facilitate faster review.

Our study consisted of two tasks: a review task and a pre-
diction task. The review task was designed to give partici-
pants a chance to observe classification performance over a
period of 40 trials, each including an image with its cor-
responding label and explanation (as appropriate for the
study condition). Participants would first review and com-
plete these trials and then continue with the prediction task,
a method suggested by others (Hoffman et al. 2018), where
subjects were asked to anticipate whether the model would
correctly classify items in a new set of images. This task
contained 50 trials based on a new set of images without
showing explanations and classification labels.

The experiment controlled two independent variables.
The first was explanation type, which refers to the mean-
ingfulness of an explanation, aligned with human rationale,
present in each trial in the review task. We tested three lev-
els of explanation type: none, strong, and weak. Figure 1
shows examples of explanations given for the different ex-
planation types for two input images used in the study. The
none type was the control condition where no explanation
was provided.

The distinction between explanation types in our study is
directed by our focus on explanations that are logical and



understandable for non-expert end users rather than experts
or detailed explanations of machine models. Thus, we de-
signed strong explanations to contain and focus on key fea-
tures of its subject animal that humans find meaningful in
order to distinguish that animal from the others (e.g., eyes,
ears, snout, and paws). In contrast, we designed weak ex-
planations to contain more background content and non-
deterministic portions of an image (e.g., nondescript patches
of fur, trees in the back, and etc.) rather than the most promi-
nent characteristics of the foreground target.

In addition, the experiment controlled simulated system
accuracy, which controlled the balance of false and cor-
rect classifications from the trials observed in the review
task. Controlling the exact accuracy observed by partici-
pants was done to prevent confounds due to different par-
ticipants observing different accuracy levels during the tri-
als of the study. We used 95% as for one accuracy level and
70% as the other; for ease of reference, we refer to these
levels as high and low (respectively). The reason for select-
ing these accuracy levels was to have a noticeable differ-
ence in observed incorrect classifications (i.e., the number
of false classifications observed by participants) while still
maintaining enough correct classifications that participants
could easily see that the system was right more often than
not. Note that, in practice, the level of accuracy that can be
considered “high” or “low” depends entirely on the difficulty
of the classification task and data set, and we use these terms
only for the convenience of reference.

The experiment followed a 2x3 between-subjects design,
where each participant completed the study in exactly one
assigned condition. The between-subjects design was impor-
tant because participants needed to review multiple inputs
and outputs to develop an understanding of the system’s ac-
curacy, and we wanted to avoid any potential confusion or
learning effects that might have occurred if participants re-
viewed outputs for multiple conditions.

Dataset, Explanation Creation, and Verification

As the source data for the classification scenario, the study
used images from the publicly available Kaggle Dogs Vs.
Cats dataset '(a dataset compiled for research on classifi-
cation algorithms). For the study, we selected a set of 40
images (20 for each animal) to use in the review task and
also, a set of 50 images (25 for each animal) to use in the
prediction task.

The experimental design required strong and weak expla-
nations for our simulated classification system. In order to
maintain experimental control over the style and meaning-
fulness of the explanations in accordance with our strong
and weak explanation types, we manually created explana-
tions (see Figure 1). By crafting explanations specifically
for the experiment, we avoided possible confounds from
high variance in explanation relevance or unexpected fea-
ture highlighting that sometimes results from real classifi-
cation and explanation algorithms. To create weak explana-
tions, we added red, transparent bounding boxes over areas

"https://www.microsoft.com/en-
us/download/details.aspx?id=54765
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Figure 1: Example of images and explanations used in the
experiment. The left shows the original image with no expla-
nation (i.e., the none condition). The middle shows a strong
explanation, focusing the highlighted areas on the animal’s
facial features. The image on the right is a weak explana-
tion, focusing the highlighted areas on the background and
non-deterministic areas.

of the image in background and with little, vague, or am-
biguous focus on the animal’s face or body. The highlighted
areas of strong explanations focus mainly on the animal’s fa-
cial features such as eyes, ears, whiskers, and snout, or they
highlight prominent body features such as the tail or feet. As
the experimental design required a clear distinction between
strong and weak explanation types, we developed the expla-
nation images with iterative refinements based on prelimi-
nary verification studies. These verification studies helped
assure that subjective interpretations of the explanations’
meaningfulness would align with their intended design. In
these preliminary verification studies, a total of 14 partici-
pants provided feedback. Of the 14, eight were familiar with
the concepts of machine learning through the courses they
took and their personal experiences.

In the preliminary verification study, participants were
asked to view each generated explanation image and rate
how well they thought the highlighted areas distinguish the
animal for a correct classification. They rated the quality of
each explanation separately using a five-point Likert scale.
We then calculated how many of these ratings matched the
intended positive (strong) and negative (weak) designations
for each image. For the purpose of achieving clear differ-
ences in meaningfulness between strong and weak groups,
any explanation with a neutral rating was considered as a
failed match. Explanations that had less than 80% match
were omitted or revised. We iteratively revised explanations
and conducted additional user tests to refine a final explana-
tion dataset with clear distinctions for the strong and weak
classifications, such that participant responses matched the
intended category. The resulting dataset was comprised of
both strong and weak explanation images for each of 40 base
images, giving us a total of 80 highlighted explanation im-
ages to use in the review phase of the experiment.
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Figure 2: An overview of the experiment’s procedure.

Procedure

The experiment was conducted through an in-lab user study
using a custom web application and a standard keyboard-
and-mouse computer interface. Each participant completed
the study in a single session, which lasted approximately 30
minutes. The overall procedure is shown in Figure 2. This
research was approved by our organization’s institutional re-
view board (IRB).

Participants first completed a questionnaire to obtain ba-
sic information about their age, education, and knowledge of
using computer systems and machine learning. The experi-
menter then explained an overview of the cat-or-dog classi-
fier system, how the system offers an output for each image,
and the associated explanation image (for the appropriate
conditions with explanations). A think-aloud approach was
encouraged, but was not mandated to the users.

Participants then completed the review task. For this task,
each participant would see: (1) an image, (2) a textual output
label representing the system’s classification of that image,
and (3) an additional explanation image based on the ex-
planation type of the experimental condition (participants in
the none condition did not see an explanation). Participants
reviewed 40 images for this task. Images were viewed one
at a time and with order randomized per participant. After
finishing each trial, they could not go back or change past
responses.

To make sure participants were giving sufficient attention
to each image and the system’s output, participants were
required to answer two questions per trial. First, we asked
whether or not they agreed with each classification. Since
these were images of cats and dogs, this was an easy ques-
tion, but it required participants to pay attention to the out-
put label and its correctness. Second, we asked participants
to indicate how well the highlighted areas explain the asso-
ciated label on a five-point Likert scale. This question was
included to ensure participants reviewed the explanation for
each image (note that this question was excluded for partic-
ipants without explanations in the none conditions). While
both questions in the review task were included primarily
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to promote sufficient participant engagement and attention,
we used the results from the second question to assess the
connection between meaningfulness of explanations and the
observed accuracy.

After the review task, participants completed a predic-
tion task, which was done for the sole purpose of collecting
an additional measure of perceived system accuracy. In this
task, participants viewed new images of cats and dogs, but
this time, no classification labels were given. Instead, they
were asked if the same computer system from the review
task would classify each image correctly. The prediction task
was not influenced by the assigned experimental condition;
all participants viewed images of cats and dog without an
associated output label and with no explanation. Each par-
ticipant predicted outputs for 50 randomly-ordered images.
We used the percentage of responses where participants pre-
dicted correct system classifications as way of estimating
participant perception of system accuracy. We refer to this
measure as implicit perceived accuracy. After the prediction
task, participants were asked to provide a numerical estimate
of the system’s accuracy on the scale of 0 to 100 percent. We
refer to this measure as explicit perceived accuracy.

Participants

The study had 60 participants, all 18 or older, with 24 fe-
males and 36 males. Participants were undergraduate and
graduate students. To make sure their familiarity with the
data science and machine learning concepts was reason-
ably similar across the conditions, we used responses to
two questions in the background questionnaire about their
academic specializations and whether they had taken any
courses in machine learning. We categorized the participants
into three levels of familiarity and distributed participants
among conditions based on familiarity.

Results

We analyzed the perceived accuracy results from the experi-
ment along with user ratings for explanation meaningfulness
from the review task.

Perceived Accuracy

We tested the effects of simulated system accuracy and ex-
planation type on both explicit and implicit perceived ac-
curacy. For statistical analysis, we applied an independent
two-way factorial ANOVA statistical analysis for each mea-
sure. Since measured levels of accuracy are related to the
simulated level of system accuracy in the review task, we
calculated the error in perceived accuracy as the difference
between the actual simulated system accuracy (i.e., the ac-
curacy rate participants observed) and the user perceived ac-
curacy (i.e., the rate measured from participant responses).
This approach allows us to easily interpret cases when users
overestimate or underestimate the accuracy relative to the
observed simulated accuracy. Figure 3a and Figure 3b show
the output plots for the calculated difference in perceived
accuracy for both implicit and explicit accuracy measures,
respectively.
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Figure 3: The perceived accuracy results expressed as the
difference from the true observed accuracy determined by
the simulated accuracy condition. Higher than O indicates
overestimating the system’s accuracy, while lower than 0 in-
dicates underestimation. Participants underestimated accu-
racy significantly more with weak explanations.

Implicit Perceived Accuracy Implicit perceived accuracy
was determined over the course of the prediction task (see
Section ). Figure 3a shows the results for implicit perceived
accuracy by explanation type and simulated system accu-
racy. We will discuss the analysis of results in terms of error
(i.e., difference from the observed accuracy), where zero er-
ror indicates a match with the conditions controlled level of
accuracy. Note that in the controlled condition with no ex-
planation, error is close to the zero line, being more often
overestimated for the low simulated accuracy and more of-
ten underestimated for the high simulated accuracy.

The two-way ANOVA results show a significant main ef-
fect for simulated system accuracy on implicit error with
F(1,54) = 7.51, p < 0.01, and effect size of n? = 0.087. A
post-hoc test via Tukey HSD showed a significant difference
between the effect of low and high accuracy (p < 0.01). This
means when the simulated system accuracy was low, people
perceived the system’s accuracy higher than when the simu-
lated accuracy was high.

The ANOVA also detected a significant effect on error
in implicit perceived accuracy due to change in explana-
tion type with F'(2,54) = 12.29, p < 0.001, and an ef-
fect size of n?> = 0.285. The post-hoc test via Tukey HSD
found weak explanations to have significantly lower error in
implicit accuracy as compared to both strong (p < 0.01)
and none explanation types (p < 0.001). This result shows
strong evidence that weak explanations caused underestima-
tion of system accuracy.

No interaction effects were detected between explanation
type and simulated accuracy.
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Average Responses for Explanation Meaningfulness
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Figure 4: Average responses for explanation meaningfulness
from the question “How well does the highlighted area ex-
plain the computer’s answer?” in the review task on a five-
point Likert scale.

Explicit Perceived Accuracy The measures for explicit
perceived accuracy was the direct numeric estimation from
participants at the end of the study. Figure 3b shows the re-
sults from explicit perceived accuracy. The results are simi-
lar to the findings from the implicit accuracy measure from
the prediction task.

For high simulated system accuracy, the results exhibit
near accurate or slight under estimation of the actual accu-
racy. On the other hand with low simulated system accuracy,
overestimation was more often observed for none and strong
explanations (Figure 3b). A two-way independent factorial
ANOVA found simulated system accuracy to have a signifi-
cant effect on explicit error with F'(1,54) = 5.31, p < 0.05,
and n? = 0.077. The post-hoc test via Tukey HSD showed
a significant difference between the effect of low and high
accuracy (p < 0.05). Participants estimated higher accu-
racy when the simulated accuracy was low, and they esti-
mated lower accuracy when the actual simulated accuracy
was high.

A two-way ANOVA test result also shows a significant
effect on explicit error due to change in explanation type
with F(2,54) = 4.48, p < 0.05, and *> = 0.130. A post-
hoc Tukey HSD test showed accuracy was estimated signif-
icantly lower in the weak than the none group (p < 0.05).

The statistical analysis indicated no evidence of an inter-
action effect between explanation type and simulated accu-
racy for explicit error.

Ratings for Explanation Meaningfulness

In the conditions that included explanations, the review task
included questions asking participants to rate the perceived
quality of the explanations. Figure 4 shows the distribution
of responses across conditions with explanations. We ana-
lyzed user responses for differences between these condi-
tions (strong and weak explanations) and the simulated ac-



curacy using a two-way ANOVA. The test showed a signifi-
cant main effect for explanation type, showing strong expla-
nations were judged as more meaningful than weak expla-
nations, with F'(1,35) = 35.37 and p < 0.001. This was
not unexpected since the dataset was designed with these
differences for the sake of the experimental conditions, but
the results add further verification for the clear differences
between our strong and weak explanations.

While the results from a two-way ANOVA test did not
show a significant effect at &« = 0.05 for simulated accuracy
on meaningfulness rating, the results are close to significant
with F'(1,35) = 3.27 and p = 0.08. This observation might
suggest weak evidence that observed system accuracy could
potentially influence perceived meaningfulness in explana-
tions. However, we emphasize that the current results do not
support this claim, and further study would be needed to di-
rectly investigate this hypothesis.

The statistical analysis did not yield evidence of an inter-
action effect between explanation type and simulated accu-
racy for these explanation ratings, with F'(1,35) = 0.86 and
p = 0.36 (NS).

Discussion

In this section, we will discuss the results of this paper and
how they are supporting our research questions and hypothe-
ses. We also discussed the limitations and future directions
of this study.

Results Interpretation

In this research, we aimed to study the influences of explana-
tions on user perception of accuracy for an observed classi-
fication system. Without explanations, the only factor users
have available to determine system capabilities and build
trust on it is the accuracy of its outputs. Even then, many
people are reluctant to accept output when they do not un-
derstand how or why it was generated.

In our experiment, we not only studied the presence and
absence of explanations in an image classification scenario,
but we also accounted for how explanation meaningful-
ness, in terms of alignment with human rationale and judg-
ment, can affect users understanding of the system accu-
racy and performance. The results demonstrate that differ-
ences in explanation human-understood meaningfulness sig-
nificantly affected user perception of system accuracy. The
results provide evidence in support of the hypothesis that
non-meaningful explanations can reduce perceived accu-
racy. That is, compared to strong or no explanations, partic-
ipants estimated system accuracy to be significantly lower
after using the system with weak explanations that do not
align with natural human logic (see Figures 3b and 3a). This
effect held true across both levels of simulated system ac-
curacy. The significant difference between strong and weak
explanations highlights that people tended not to trust what
they did not understand. The results of the prediction task
suggest that without human-meaningful explanations, par-
ticipants expect a greater number of failures than observed
in the past. This implies that understanding of processing
logic is more important for user trust than the history of ob-
served results alone.
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We must note, however, that having weak or non-
meaningful explanations, as studied in our experiment, does
not necessarily mean that the explanations themselves are
wrong or bad with respect to accurately representing a
model. Regions of an image that humans do not consider
meaningful might be the most relevant for the computational
model if they accurately present the most important regions
for the classification algorithm. In other words, explana-
tion veracity with respect to the model is separate from hu-
man meaningfulness with respect to human rationale. While
users might have a hard time making sense of classification
based on, for example, a patch of the grass in the back-
ground or a indistinct patch of fur, it is certainly possible
that the model could use such features to make its deci-
sion. From this stance, the results further demonstrate the
value of and need for human-interpretable explanations. The
results provide strong evidence that user understanding of
computational processing can influence trust or perception
of the accuracy of machine outputs. Users consider how
a system draws a conclusions in order to best make deci-
sions on whether to use and rely on its output for real tasks,
and machine rationale that does not make sense to a person
can cause users to systematically perceive accuracy as lower
than observed over a series of observed cases.

On the other hand, the opposite effect was not observed
for human-meaningful explanations. That is, the study did
not contribute evidence for the hypothesis that the addition
of meaningful explanations improves perception of accu-
racy; levels of perceived accuracy were relatively similar for
the none and strong conditions. Accuracy estimations were
relatively accurate in the baseline none conditions, and it
seems the addition of explanations did not cause participants
to overestimate the machine’s abilities. It would be consid-
ered problematic if participants trusted in the system’s accu-
racy more than they should, but it is important to study the
possibility of such issues for different types of systems and
with different explanation formats.

Additionally, aside from the explanation types, the results
show a significant difference between high with low simu-
lated accuracy conditions for perceived accuracy. As is evi-
dent in Figures 3a and 3b, accuracy was generally estimated
higher for the low accuracy conditions and often estimated
as lower for the high accuracy conditions. This may be re-
lated to expectations of accuracy for computational systems,
where one possibility is that participants might have thought
that the actual 70% in the low conditions was lower than
researchers would use for testing, so they might have esti-
mated higher. For the high accuracy cases, since the simu-
lated accuracy was held at 95%, and the maximum possible
accuracy is 100%, it maybe have been a type of a ceiling
effect since the allowable range had more possible values
below the true observed percentage.

Implications for Explanation Interfaces

Further research is needed to collect evidence about how ex-
planation meaningfulness affects perception of system accu-
racy and reliability for other types of applications and algo-
rithms, but the study outcomes using the simplistic image
classification scenario provide clear results for the general



effect. Assuming the same effect observed in our scenario
apply to other cases, the findings from this experiment are
important for designers who are interested in providing ex-
planations for the purpose of improving trust in the system.
If an explanation is not easily understandable or meaning-
ful to the end users, the addition of explanations could have
the opposite effect and actually reduce the user’s trust. This
highlights the importance of researchers and system design-
ers considering the quality and format of explanations.

Determining an appropriate design for an explanation can
be challenging, particularly for systems meant to support
more complex tasks or those that use advanced or deep mod-
els. Designers have near limitless options for crafting ex-
planations from different formats, styles, and levels of de-
tail. Even assuming an understandable explanation format
and sound machine reasoning, providing too much detail
about the model or computational processing could poten-
tially confuse or overwhelm users, e.g., (Kizilcec 2016). In
many cases, it may be hard to know ahead of time how well
users will be able to make sense of any given design. This
fact motivates the need for iterative design and user testing
to help identify and resolve issues in explanation design.

User interpretations of what makes explanations mean-
ingful may also depend on a user’s backgrounds and levels
of knowledge, which can vary greatly. It may therefore be
helpful to consider dynamic levels or styles of explanation
that are customized based on user meta-data or even inter-
action behavior. The range of design possibilities for expla-
nation design and current limitations in knowledge opens a
number of opportunities for future research.

Limitations and Opportunities for Future Work

Though the experiment contributed novel findings about the
impact of strong and weak meaningful explanations on per-
ceived accuracy, the specifics of any experimental design
introduces limitations for interpretations of the results. For
instance, the experiment used a hypothetical interpretable
classifier to maintain experimental control over both the
classification accuracy and explanation quality. Real ma-
chine learning systems and data analysis scenarios are of-
ten much more complex and may have greater variation or
noise in explanation output for a given dataset. Therefore, it
will be important to conduct similar evaluations using sys-
tems with other tasks and using actual, genuine models. Also
along these lines, it would be useful to study systems based
on other data types (e.g., video or text) or to involve more ad-
vanced decision-making tasks. Studying more complex sit-
uations may make it more difficult to assess differences in
measures such as trust, task performance, and perceived ac-
curacy, but it may also allow opportunities to observe more
nuanced behaviors and to learn more about the development
of mental models.

Similarly, while our work focuses on users’ perception
of accuracy using a system that supports image classifica-
tion and bounding boxes as local explanations, it would be
valuable to investigate other explanation types such as natu-
ral language explanations, analytical explanations based on
model metrics, or global explanations about the model as a
whole (e.g., a decision tree). We expect that the nature of
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the explanation could influence the user’s understanding of
an intelligent system, and it would be interesting to assess
whether results similar to those of this study might be ob-
served with alternative presentations.

Finally, in addition to explanation meaningfulness, it
would be valuable to investigate potential relationships be-
tween meaningfulness and user understanding of computa-
tional functionality in affecting perceived accuracy. Perhaps
if users can develop an understanding of a system’s under-
lying models, they might be able to distinguish between ex-
planatory elements that are meaningful from the standpoint
of normal human logic and those that are accurate with re-
spect to computational processes. We are interested in study-
ing whether user understanding of the model might allow
users to more accurately assess system accuracy even when
explanations are not obviously human-meaningful.

Conclusion

With the recent advances in machine learning, artificial intel-
ligence, and deep learning, it is more important than ever to
understand methods for explainable machine models. In this
research, we studied how visual explanations influence user
trust and perception of the system accuracy for participants
experiencing different levels of system accuracy. The results
show that participants significantly underestimated the sys-
tem’s accuracy when it provided weak, less-meaningful ex-
planations that did not align with users’ logic. Therefore, for
intelligent systems with explainable interfaces, the results
demonstrate that users are less likely to accurately judge the
accuracy of algorithms that do not operate based on human-
understandable rationale. It is not sufficient for designers
to incorporate explanations into intelligent systems without
considering the implications and ethics of user interpretation
and trust. Further research is needed to understand how other
properties and variations of explanations affect user percep-
tions and behaviors.
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